
15

2
BUILDING BLOCKS OF

PROGRAMMING

LEARNING OBJECTIVES

�• Explain good programming practice guidelines

�• Describe variables and commonly used data types in Python

�• Write code statements that assign values to variables

�• Classify types of errors that can occur in Python code

�• Develop functions that contain code segments

�• Write code statements using Python functions

INTRODUCTION
Programming in the Python language uses instructions to tell the computer what actions you
want performed. This chapter begins by discussing good programming practice. We then
explain the basic elements of Python code, beginning with Python keywords, objects, opera-
tors and delimiters, data types, and variables. We explain comments and assignment statements
next. Python code statements must comply with strict syntax rules in Python and the incor-
rect specification of code statements result in errors. This chapter explains the three types of
errors that often result. Following the discussion of error types, we introduce functions. The
packaging of Python code into smaller components helps to organize code and simplify the
identification and resolution of errors. We also illustrate commonly used Python built-in func-
tions and their usage. The chapter concludes with the development of a code module used by
Python code in a different file.

Copyright ©2021 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

16 Introduction to Python Programming

GOOD PROGRAMMING PRACTICE
Many references provide advice and recommendations for best practices in programming. We
will discuss some basics that can influence your development practices as you learn more about
Python. Best practices do not just apply to Python code, and in fact, there are entire books on
the subject (i.e., Martin, 2009).

To begin, consider who else will be reading your code. Is it a coworker or classmate with whom
you might work on the same project? Is it someone grading your homework or project? On
the other hand, is it your future self, as you may be working on a long-term project? Consider
whether your code will be easy to follow and understand to whomever may be reading your code
after you write it (Kaefer, 2018).

To facilitate easy-to-understand code, be sure to use descriptive variable names. While variable names
like a, i, or x may be simple to type and illustrate concepts, consider naming your variables after
what they represent or their use. For example, customer_name is better than c, and survey_
respondant_age is better than x. Be sure to add plenty of helpful comments in your code. Leave
comments before functions to explain what they do. Include comments throughout code that may
be complex or counterintuitive on a first glance. Above all, be consistent. Avoid using different styles
throughout your code and follow any style guidelines that may be in place in your organization.

Good programming practice is not simply about the readability of your code. A programmer
should always consider whether there is a better way to do something. Does your code require
doing the same thing repeatedly? A loop is a logical response (we cover loops in Chapter 4). Also,
consider breaking the code into functions and having a loop call the function. These are the
basics of writing modular code. As the number of lines of code increases, you may want to break
it up into modules. The more you interact with code from different sources and read code written
by different people, the more clear it will be why following good practices results in better com-
munication among programmers and fewer headaches when trying to debug problems (Martin,
2009; van Rossum, Warsaw, & Coghlan, 2001).

Lessons learned: In this section, we learned about some practices to follow when developing code,
which becomes very important when you work with other people on programming projects.

BASIC ELEMENTS OF PYTHON CODE
The Python programming language contains basic elements for specifying instructions. When a
Python instruction is executed, the interpreter processes the instruction as a command, which is
telling the processor what action it needs to perform. Some basic commands include assigning
a value to a variable, adding two values together, and, as we saw in our first Python program in
Chapter 1, printing a message to the console for a user to read. In order for the interpreter to
operate efficiently, a limited number of basic elements are used to specify instructions. This sec-
tion briefly introduces elements, including Python keywords, objects and classes, operators and
delimiters, data types, and variables.

Python Keywords

Python keywords are identifiers that are reserved words that the interpreter uses for very spe-
cific purposes. As we will see in the chapter, we can create and name variables and functions
as part of the instructions that we are writing. However, we are not allowed to use any of the
Python reserved words for the names of variables or functions that we are creating. We list some

Copyright ©2021 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

Chapter 2 ■ Building Blocks of Programming 17

commonly used Python keywords in Table 2.1. We will use all the keywords listed in Table 2.1
within this book. The official list of all Python keywords is in the Python documentation (Python
Software Foundation, 2019, “Keywords”).

TABLE 2.1 COMMONLY USED PYTHON KEYWORDS

False Except

None for

True from

and global

as if

break import

continue in

def is

elif not

else or

Objects and Classes

Objects are the building blocks of Python, which is an object-oriented programming language.
Objects or relations between objects represent all data in a Python program (Python Software Foun-
dation, 2019, “Data Model”). Python classes provide all the standard features of object-oriented
programming, and classes provide a means of bundling data and functionality together
(Python Software Foundation, 2019, “Classes”). In other words, you use classes to create objects
and objects can have functions associated with them. Classes are used to create different types of
objects that have specific data types and specific actions associated with them. For example, an
object can be numeric and an action that can be performed with that object is to add another
number to it. A different class of object would be one that had text-based values. An action that
may be associated with that type of object could be to make it all uppercase (made up of all capital
letters). This action would not apply to a numeric valued object. A method is an action that you
can perform to or with an object. We will explain methods in more detail in the next chapter and
see examples of different methods that are used with different types of objects. To learn more about
the inner workings of Python, please see The Python Language Reference found at https://docs
.python.org/3/reference/index.html.

Operators and Delimiters

Operators and delimiters are special symbols that the Python interpreter uses to perform opera-
tions and to separate items. Both operators and delimiters work with other elements. Table 2.2
shows commonly used operators and delimiters. We will use these delimiters and operators within
this book. For example, the “+” operator is used when we want to add two values together and
the “,” delimiter is used to separate two items. The interpreter needs to have something (either
an operator or a delimiter) between two distinct items, or it will not understand what it is being
instructed to do with those items. The Python Language Reference specifies additional Python
operators and delimiters (https://docs.python.org/3/reference/index.html).

Copyright ©2021 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

https://docs.python.org/3/reference/index.html
https://docs.python.org/3/reference/index.html
https://docs.python.org/3/reference/index.html

18 Introduction to Python Programming

Data Types

A data type determines what kind of values a piece of data can have and what kind of operations
you can perform on the data. Table 2.3 presents the commonly used data types in Python.

TABLE 2.3 PYTHON DATA TYPES

Data Type (Python Type) Description

Boolean (bool) Used to store either True or False values.

Integer (int) Used to store integers, which are whole numbers.

Float (float) Used to store floating-point numbers, which can have decimals.

String (str) Used to store text values such as “12 Main St., Anytown, USA.”

TABLE 2.2 COMMONLY USED PYTHON OPERATORS AND DELIMITERS

Operators Delimiters

+ (

-)

* [

**]

/ {

< }

> ,

<= :

>= ;

= = .

! = =

Boolean data-type variables can store either True or False logical values. We will use variables
of this data type in Chapter 4 when evaluating conditions that involve comparisons. Program-
mers use Integer data-type variables to store whole numbers. Variables of this data type are very
useful for counting. Float data-type variables are also known as floating-point variables and can
store decimal values. This type of variable is useful for situations where there can be fractional
values, which often result when dividing numbers. Programmers use string data-type variables to
store text that consists of letters, special symbols, and numbers. You enclose strings in quotes to
reference them in code. Strings are very useful for composing messages to communicate to users
and for creating labels used when formatting output results.

Variables

We use variables to store and access values that we are working with. The values of variables
can change, or vary, as a program executes. There are some restrictions with naming of variables,
including (1) they cannot have the same name as a Python keyword, (2) they cannot have any
spaces or operators or delimiters within them, and (3) they cannot begin with a number.

Copyright ©2021 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

Chapter 2 ■ Building Blocks of Programming 19

You do not formally define variables in Python (which most programming languages require). In
Python, you create a variable when you first use it. The variable name that you use when some-
thing is created refers to an object that is constructed for the purpose that you are specifying. The
value that you store in a variable determines the variable’s data type and the actions that can be
performed to or with the corresponding object that it refers to.

Lessons learned: In this section, we learned about basic elements of Python code, including
Python keywords, objects and classes, variables and data types, and operators and delimiters.
From this point onward, we will combine these basic elements into various statements that make
up our code.

PYTHON CODE STATEMENTS
Now that we are familiar with basic elements of Python code, we can begin to write instructions
using these elements. However, there are several additional details to discuss first, including com-
ments and variable assignment.

Comments

Comments are very important for documenting Python code. Comments in Python code begin
with a pound sign (#), and the interpreter does not process them. Comments explain how the
code works for those reading the code and can be an entire line or just a note at the end of a line of
code. Multiple line comments (also known as documentation strings) can be written beginning
with three quotes (“““) and ending with three quotes.

Variable Assignment

Assignment statements specify what value something is to take. You read assignment statements
in Python code from right to left, storing the value on the right-hand side of the equal sign in the
variable on the left-hand side of the equal sign, following the syntax:

variable_name = value

For example, taxi_number = 333 for an integer variable or my_name = “John Doe” for
a string variable. If you want one variable to contain the same values as another variable, you can
do so like in the following code statement: other_survey_values = survey_values.

Code Examples

We now present a couple of code examples to illustrate the use of the elements just discussed.
Figure 2.1 illustrates some Python code statements in a file (Fig 2_1 Python code example 1.py).

FIGURE 2.1 PYTHON CODE EXAMPLE 1

Copyright ©2021 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

20 Introduction to Python Programming

Several details in the Python code in Figure 2.1 are fundamental to writing programs in Python.
Lines 1, 3, and 5 have comments that take up an entire line, and line 4 shows an example of a com-
ment that makes a note at the end of a line of code. Line 4 is an assignment statement in which
the right-hand side is a value in quotes. The value within quotation marks is a string-type value.
When the code in line 4 executes, the trip_id variable will be a string. Line 5 illustrates the use
of two built-in functions to report the data type of the just created trip_id variable. Specifically,
a type function is within a print function. We already used the Python built-in print function
in the example presented in Chapter 1. The type function in Python determines the data type of
an object. Line 8 of the Python code in Figure 2.1 is an assignment statement in which the right-
hand side is a number. When the code in line 8 executes, the trip_seconds variable will be an
integer. The type function is also in line 9, which reports the data type for the just constructed
trip_seconds variable. The output of these code statements is in Figure 2.2.

FIGURE 2.2 OUTPUT FROM EXECUTION OF PYTHON CODE IN FIGURE 2.1

FIGURE 2.3 PYTHON CODE EXAMPLE 2

FIGURE 2.4 OUTPUT FROM EXECUTING CODE EXAMPLE 2

Examining the output shown in Figure 2.2, we see that the data type for the trip_id variable
is a string and the data type for the trip_seconds variable is an integer. The output messages
specifically indicate that trip_id is of class “str” and that trip_seconds is of class “int.”

Our next example is like the first example but illustrates the construction of float and Boolean
variables. Line 2 in Figure 2.3 assigns the value 1.1 to the variable trip_miles and line 3
prints out the data type of the trip_miles variable. Line 6 assigns the value True to the
variable trip_completed. Note that True is a Python keyword shown in Table 2.1 and is
in blue font in Figure 2.3. Also note that there are not parentheses around True, because if
there were, it would be a string instead of the logical value True. Line 7 then prints out the
data type of the trip_completed variable.

Examining the output shown in Figure 2.4, we see that the data type for the trip_miles vari-
able is in fact a float and the data type for the trip_miles variable is a Boolean.

Copyright ©2021 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

Chapter 2 ■ Building Blocks of Programming 21

Mathematical Expressions

In the previous section, we saw several examples where assignment statements created variables
of different data types based on the values assigned to them. In addition to literal values, we use
mathematical expressions to assign values to variables. When writing mathematical expressions,
we use arithmetic operators, shown in Table 2.4. Arithmetic operators include symbols to add,
subtract, multiply, divide, and exponentiate (raise to a power) values.

STOP, CODE, AND UNDERSTAND!

SCU 2.1 Variable Assignment

Download the file “SCU 2_1.py” from the companion website and save it either on your computer or on a removable
storage device. Open the file in the Python IDLE editor and execute the program to see that it creates a variable
that is a float data type. Add quotation marks around the value 12.5 in the assignment statement in the line indicated
so that the type of variable created is a string data type. Execute the modified program to verify that the revised
code creates a variable with a string data type.

TABLE 2.4   PYTHON ARITHMETIC OPERATORS

Symbol Purpose

+ Addition

- Subtraction

* Multiplication

/ Division

// Integer division

** Exponentiation

When writing mathematical expressions, you must be careful with the order of operations, which
follow the PEMDAS rule (Parenthesis first, then Exponentiation, next Multiplication and Divi-
sion, and then Addition and Subtraction). Figure 2.5 illustrates how adding two numbers and
multiplying by a third number can lead to two different results.

Figure 2.6 shows the output that results from the execution of the Python code in Figure 2.5. The
first result (result1) of the value 20 reflects the fact that the multiplication of the second and
third numbers occurs first before the addition of the first number to the result of the multiplica-
tion. The second result (result2) of the value 24 reflects the fact that the addition of the first
two numbers occurs before the multiplication of the intermediate result and the third number.
This example illustrates why we must be careful when applying mathematical expressions. When
in doubt, we can use extra parentheses to make sure that specific calculations occur before others
within an expression.

Copyright ©2021 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

22 Introduction to Python Programming

Lessons learned: In this section, we learned about how to use variables in assignment statements,
using print statements to visualize our results. We also learned how to use the Python type
function to determine and report the data type of an object in a Python program and why the
order of operations is important when we have Python code that performs calculations.

ERRORS
Writing Python code often results in three types of errors: syntax errors, exceptions, and logic
errors. We explain and illustrate each of these error types in the following sections.

Syntax Errors

Syntax errors occur when the Python code does not follow the rules that dictate how to write
Python code statements. The interpreter identifies syntax errors and highlights the cause of the
syntax error in red font in the Python shell window, as shown in Figure 2.7. When a syntax error
exists in Python code, the code will not execute until you resolve the syntax error. The cause of
the syntax error in this example is that there is nothing combining the string and the variable
symbol within the print statement (such as a comma “,”).

FIGURE 2.6 OUTPUT FROM EXECUTION OF PEMDAS EXAMPLE

STOP, CODE, AND UNDERSTAND!

SCU 2.2 Mathematical Expressions

Download the file “SCU 2_2.py” from the companion website and save it either on your computer or on a remov-
able storage device. Open the file in the Python IDLE editor and add parentheses around two values, a subtraction
operator, and an exponentiation operator to the code below so that the code prints the value 25. Execute the modi-
fied program after the change to verify that the revised code runs and produces the correct result.

FIGURE 2.5 PEMDAS EXAMPLE

Copyright ©2021 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

Chapter 2 ■ Building Blocks of Programming 23

STOP, CODE, AND UNDERSTAND!

SCU 2.3 Syntax Errors

Download the file “SCU 2_3.py” from the companion website and save it either on your computer or on a removable
storage device. Open the file in the Python IDLE editor and execute the program to see that it throws a syntax error
when run. Read the text of the error and fix the code as necessary. Execute the modified program after the change
to verify that the revised code runs and produces the correct result.

Exceptions

Exceptions occur during Python code execution when you attempt an action that is not possible
or not allowed. Figure 2.8 illustrates an example of Python code that results in an exception.
Figure 2.9 has the output that corresponds to the execution of the code in Figure 2.8. Due to the
fact that the print function was “Print” and not “print,” a NameError exception occurs. The
Python interpreter reports that the “name ‘Print’ is not defined,” or in other words, there is no
function with that name. Python programmers encounter this type of exception frequently due
to Python’s case sensitivity (discussed in Chapter 1).

FIGURE 2.7 PYTHON SYNTAX ERROR

FIGURE 2.8 PYTHON CODE WITH EXCEPTION

Copyright ©2021 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

24 Introduction to Python Programming

Figure 2.10 illustrates another Python code example that results in a different type of exception.
Figure 2.11 has the output that corresponds to the execution of the code in Figure 2.10. The
exception that occurs is a TypeError exception, which occurs because line 3 of the Python code
in Figure 2.10 attempted to add an integer valued variable and a string valued variable together.
The Python interpreter reports which line (line 3) was involved and prints out that line in the
error message “result = first_number + second_number.” In addition, the explana-
tion is “unsupported operand type(s) for +: ‘int’ and ‘str.’” It has been our experience that begin-
ning Python programmers find these error messages puzzling (and sometimes frustrating), but as
they learn the needed terminology and gain experience, the error messages become more helpful
and resolving the issues becomes much easier.

FIGURE 2.9 OUTPUT FOR PYTHON CODE WITH EXCEPTION

FIGURE 2.10 PYTHON CODE WITH TYPEERROR EXCEPTION

FIGURE 2.11 OUTPUT FOR PYTHON CODE WITH TYPEERROR EXCEPTION

Table 2.5 identifies some common Python built-in exceptions. We will see examples of these
and other exceptions later in the book. Chapter 5 has an example that uses an installed package
to show a variety of exceptions that can occur (and how to resolve them) as Python programs
become more involved. References for other Python built-in exceptions are in the official Python
documentation (Python Software Foundation, 2019, “Built-in Exceptions”).

TABLE 2.5 SOME COMMON PYTHON BUILT-IN EXCEPTIONS

Python Built-in Exception Description

IndexError Occurs when a subscript of a sequence has a value outside the range of the sequence.

NameError Occurs when you use an undefined name.

TypeError Occurs because of a type mismatch.

ValueError Occurs when you pass an argument to a function of the correct type but whose value is
improper.

ZeroDivisionError Occurs when you divide by zero.

Copyright ©2021 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

Chapter 2 ■ Building Blocks of Programming 25

Logic Errors

The third category of errors, logic errors, is often the most difficult to identify. A logic error
occurs when a program executes without terminating with an error condition but produces incor-
rect results. Logic errors can result from using an incorrect operator in an equation or using
parentheses in the wrong location. An example of Python code with a logic error is in Figure 2.12.

STOP, CODE, AND UNDERSTAND!

SCU 2.4 Exceptions

Download the file “SCU 2_4.py” from the companion website and save it either on your computer or on a removable
storage device. Open the file in the Python IDLE editor and execute the program to see that it results in an excep-
tion. Remove the quotation marks around the value in the assignment statement in the line indicated to resolve the
issue. Execute the modified program to verify that the revised code executes properly and that no exception occurs.

FIGURE 2.12 PYTHON CODE WITH LOGIC ERROR

FIGURE 2.13 OUTPUT FOR PYTHON CODE WITH LOGIC ERROR

This example demonstrates how easy it is to develop code that executes but does not produce the
correct results. Figure 2.13 prints out the message that the average of 4 and 8 is 8! The true aver-
age of 4 and 8 is 6 and results when you add the two numbers together prior to dividing the sum
by 2. Reviewing the order of operations discussed earlier, we need to put parentheses around the
addition of first_number and second_number to correct this error, which adds the num-
bers together first. As it is now (without those parentheses), we first divide second_number by
2 (resulting in the value 4) and then add that result to first_number (resulting in a final value
of 8), which is incorrect. To ensure that code executes with the correct results, programmers need
to develop test cases and verify that the expected outcomes for each test case do in fact occur.

Copyright ©2021 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

26 Introduction to Python Programming

Lessons learned: In this section, we learned there are three types of errors in Python: syntax
errors, exceptions, and logic errors. Syntax errors are the easiest types of errors to resolve
and result when we do not follow the rules for correctly specifying Python code. Exceptions
are the types of errors that occur when we attempt to do something in Python that is not
 possible or not allowed. Logic errors occur when code executes without terminating with
an error message but has incorrect results. We will encounter each of these error types often
as we develop code but will learn and become better at diagnosing them and improving
our code.

FUNCTIONS
Python Built-in Functions

Python comes with over 60 built-in functions (Python Software Foundation, 2019, “Built-in
Functions”). For example, the max() function will return the maximum value of a list of
numbers. If you execute the Python code statement “max(1, 2),” the value 2 is returned.
A list of built-in functions may be found at https://docs.python.org/3/library/functions
.html. Table 2.6 presents some of the commonly used built-in functions along with a brief
description of each.

STOP, CODE, AND UNDERSTAND!

SCU 2.5 Logic Errors

Download the file “SCU 2_5.py” from the companion website and save it either on your computer or on a removable
storage device. Open the file in the Python IDLE editor and execute the program to see that it runs but does not
have the correct result. Add parentheses around the two values being added in the assignment statement in the
line indicated to resolve the issue. Execute the modified program to verify that the revised code runs and produces
the correct result.

TABLE 2.6 COMMONLY USED PYTHON BUILT-IN FUNCTIONS

Built-in Function Description

float(value) Returns a floating-point equivalent of value, which is a string or numeric value such as an
integer.

input(message) Prompts user to enter something and returns the value they entered as a string.

Copyright ©2021 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html

Chapter 2 ■ Building Blocks of Programming 27

We already have made use of the type function in the examples shown in Figures 2.1 and 2.3
earlier in the chapter. An example from our Taxi Trips data set will help to illustrate the usage
of some of the other Python built-in functions. Referring to Table 1.2 and Table 1.3, several
fields in the Taxi Trips data set involve taxi trip cost-related information (Fare and Tips). These
fields have the data type “Money” in the SODA API (which is discussed later in the textbook),
but there is not a Python basic data type “Money.” If we assign the value $4.75 to a variable,
an error will occur, because the Python interpreter doesn’t recognize the usage of a dollar sign
symbol. We will address this in the next chapter after we go further in depth with compound
data types and strings.

For now, let us examine a Python program that prompts the user to enter in amounts for the taxi
fare and tip amount for a taxi trip. The Python code in Figure 2.14 does this in lines 3 and 4 and
then reports back to the user the amounts entered (in lines 5 and 6) as well as the data types of
the variables (in lines 7 and 8). Note that code lines that span more than one physical line in the
file have special symbols on the left-hand side in Figure 2.14. The output of these statements is in
Figure 2.15. The data types for each of the variables are strings (even though the values entered
appear to be numbers). In order to add these two values together, we must convert the values to a
data type that supports addition. Line 11 of the code in Figure 2.14 shows one way to do this, by
using the float built-in function to convert the string data-type representations of the numeric
values into float data-type values and then adding those values and assigning the result of the addi-
tion to the variable trip_total. The trip_total variable will be a float data-type variable.
An additional conversion is necessary to report the result back to the user. As we saw in Figures 2.10
and 2.11, if we try to combine two different types with the “+” operator, a TypeError exception
will result.

When we use the “+” operator with two or more string data-type arguments, we concatenate
the string components into a larger string. The string operation concatenation combines mul-
tiple strings into one string. For example, concatenating the two strings “Hey,” and “Taxi!” and
assigning the result to a variable would be performed using the statement variable_name =
“Hey,” + “Taxi!” Line 12 of the Python code in Figure 2.14 uses the str built-in func-
tion to convert the trip_total float value into a string and then uses the “+” operator to
concatenate the “$” character with the string value. The last line of the output in Figure 2.18
displays the outcome of this print statement.

int(value) Returns an integer corresponding to value, which is a string or floating-point value.
Truncates the decimal component of value.

len(object) Returns the number of items in an object, where object can be a string, tuple, list, or other
collection.

max(arguments) Returns the largest item from a set of arguments.

min(arguments) Returns the smallest item from a set of arguments.

round(number
[,numDigits])

Returns number rounded to numDigits precision after the decimal point. When we omit
numDigits, the round function returns the nearest integer.

str(value) Returns the string version of a value.

sum(sequence [,start]) Returns the sum of a sequence (optionally beginning at a specified start location).

type(object) Returns the data type of an object.

Copyright ©2021 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

28 Introduction to Python Programming

FIGURE 2.15 OUTPUT FROM EXECUTION OF PYTHON CODE TO ADD UP
TRIP COSTS

STOP, CODE, AND UNDERSTAND!

SCU 2.6 Use a Built-in Function

Download the file “SCU 2_6.py” from the companion website and save it either on your computer or on a removable
storage device. Open the file in the Python IDLE editor and add a function call around the string to print the length.
Hint: Use the Python built-in function len. Execute the modified program after the change to verify that the revised
code runs and produces the correct result.

User-Defined Functions

We have used small Python code examples up until this point to illustrate basic coding elements
of Python. As Python programs become more complex and involve more lines of code, errors can
be more difficult to identify, and the code can be more difficult to modify and to test. To address
these issues, a programming best practice is to package code into small units, which are often one
printed page or less. In Python, we accomplish this by placing portions of code into functions,
which are subroutines of code developed to perform specific tasks.

Function Syntax
Functions play a very important role in Python programming, and as we will see in the coming
chapters, the use of packages depends significantly on the use of the functions that are within
those packages. To thoroughly understand how functions work, we need to carefully examine
function syntax. We show the syntax for defining a function in Python in Figure 2.16.

FIGURE 2.14 PYTHON CODE TO ADD UP TRIP COSTS

Copyright ©2021 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

Chapter 2 ■ Building Blocks of Programming 29

Syntax specifications involve several prominent features, including Python keywords in bold
font, user-specified information in italicized font, and optional components specified within
square brackets. The first line of every function definition in Python begins with the keyword
def, followed by the function name and a set of parentheses in which you can specify an optional
set of parameters, and then ends with a colon. The indented code statements that follow are part
of the function. Optionally, a function can return one or more values. If you return more than
one value, you need to separate each value with a comma. The specification of the function ends
when a nonindented line of code occurs or if you reach the end of the file. We show a flowchart
of the logic in using a function in Figure 2.17 to help visualize how a function works.

FIGURE 2.16 PYTHON FUNCTION SYNTAX

FIGURE 2.17 FLOWCHART OF FUNCTION USAGE

Begin

Code statements(s)

Function 1
([parameters])

Code statement(s)

End

[Parameters passed]

[Values returned]

Begin Function1

Code statement(s)

[Return values]

End

The logic shown in Figure 2.17 shows that when you encounter a code statement that uses a
function, you pass control to the function code. You can optionally pass parameters to the func-
tion, which the function uses in its processing. The function comprises code statements and
optionally may return values back to the calling code. When the function ends, the control of
code execution resumes in the calling code.

Using Functions
The simplest form of a function is one that does not have any parameters and does not return
any values. Figure 2.18 shows an example of such a function that prints out a message. Func-
tions in Python only execute when you invoke them. To invoke a function, you use the function
name, along with the specification of function parameters (if there are any). Because the function
defined in lines 1 and 2 of the Python code in Figure 2.18 does not have any parameters, empty
parentheses follow the function name.

Copyright ©2021 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

30 Introduction to Python Programming

Figure 2.19 illustrates the output that results when executing the Python code in Figure 2.18.

FIGURE 2.18 SIMPLE FUNCTION WITH NO PARAMETERS

FIGURE 2.19 OUTPUT OF PROGRAM IN FIGURE 2.18

FIGURE 2.20 SIMPLE FUNCTION WITH PARAMETERS

FIGURE 2.21 OUTPUT OF PROGRAM IN FIGURE 2.20

FIGURE 2.22 ERROR USING FUNCTION WITH INCORRECT PARAMETERS

Functions become more dynamic when you pass parameters to them. Actions performed by the
statements in a function can change when it receives different information. Figure 2.20 shows an
example of such a function that receives a name and prints out a different message depending on
what name it receives.

Figure 2.21 shows the output that results from executing the Python code in Figure 2.20. As you
can see, the code prints two different messages, because we pass a different name to the function
each time. This simple example illustrates the ability of functions to do different things depend-
ing on what information they receive.

When functions have parameters, the possibility of errors that can occur increases. Two common
errors are specifying the incorrect number of parameters and using incorrect data types of param-
eters. The Python code in Figure 2.22 illustrates such an error, where line 4 invokes the function
but attempts to pass two parameters.

Copyright ©2021 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

Chapter 2 ■ Building Blocks of Programming 31

Figure 2.23 illustrates the error that occurs when executing the code in Figure 2.22. The
error message is very helpful. The message identifies the line number and shows the code
that caused the error. The last line of the error message specifies that a TypeError occurred
and that the specific function takes one positional argument (parameter), and the function
received two.

FIGURE 2.23 OUTPUT OF PROGRAM IN FIGURE 2.22

FIGURE 2.24 FUNCTION RETURNING A VALUE

FIGURE 2.25 OUTPUT OF PROGRAM WITH FUNCTION RETURNING A VALUE

Functions can become even more useful when they return a value or values. To illustrate how
returning a value works, the next example returns a string from the function and then prints the
result that the function returns.

The Python code in Figure 2.24 invokes the function two different times in two different
ways. The code in line 4 invokes the function and assigns the value that the function returns
to a variable named message. Then line 5 uses the print function to print out the value of
the variable message. Line 6 uses the user-defined function within the print function. The
output of this code execution is in Figure 2.25, illustrating that the different approaches
yield similar results.

Copyright ©2021 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

32 Introduction to Python Programming

The Python code following the function definition in Figure 2.26 creates two integer variables in
lines 7 and 8 and then invokes the find_average function within the code in line 11. Note
that the two arguments that the function receives have different variable names than the names
of the arguments used in the definition of the function. The arguments passed can take other
forms as well, such as actual values or the result of some operation or calculation. The function
only has one line of code, which is to return the value that results from dividing the sum of the
two received arguments by the value 3. The output from executing the code in Figure 2.26 is in
Figure 2.27.

FIGURE 2.26 THE find _ average FUNCTION

FIGURE 2.27 OUTPUT FROM EXECUTION OF find _ average FUNCTION

Figure 2.26 illustrates an example of a function that receives two parameters and returns a value
that is based on the data it receives.

Function Location in Code
When Python code is in a text file, you can define functions anywhere within the file and
in any order when there are multiple functions. However, it is important that the function
definition occurs prior to the use of the function, and so a convention commonly followed

STOP, CODE, AND UNDERSTAND!

SCU 2.7 Modify a User-Defined Function

Download the file “SCU 2_7.py” from the companion website and save it either on your computer or on a remov-
able storage device. Open the file in the Python IDLE editor and modify the function “my _ function” so it prints
the average of x and y. Execute the modified program after the change to verify that the revised code runs and
produces the correct result.

Copyright ©2021 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

Chapter 2 ■ Building Blocks of Programming 33

when writing Python code is to have all the functions defined at the beginning of the file and,
if any executable lines of code in the file are not part of a function, to have those lines of code
at the very end.

Lessons learned: In this section, we learned about a few functions that Python already has defined
and that one common use of built-in functions is converting object data types from one type to
another. We also learned about user-defined functions and how functions can have arguments
(values passed to them) as well as return values. We saw how we must be careful when specifying
arguments when we call functions or else errors will result.

FIGURE 2.28 MODULE WITH find _ average FUNCTION

USING MODULES OF PYTHON CODE
As discussed in Chapter 1, Guido van Rossum’s vision for Python was that users could create their
own coding modules and make those coding modules available to others. The previous section
detailed how to create functions and to use them in Python code. In addition to using functions
created within a Python file, you can use functions that others develop that are in other files.
There are numerous modules available for Python, and users can even create their own. There are
also built-in modules that come with Python. For example, the random module lets you gener-
ate pseudo-random numbers, which you can use to add an element of chance to a program or
generate simulation data. Additionally, the fractions module enables the programmer to perform
arithmetic on fractions stored as strings like “4/5,” and the math module provides functions like
sin, cos, and tan. We explain and give an example of using several useful packages later in this
book. A searchable index of Python modules is available at https://pypi.org/.

We use functions in modules by importing modules. The Python code in Figures 2.28 and 2.29
illustrate how you accomplish this.

PYTHON INSIGHT

Python uses indentation to differentiate levels of code. Indentation refers to the number
of spaces and/or tabs at the beginning of a line of Python code. As we have already seen,
function definition uses indentation to indicate what code is within the function. We will
use indentation to an even greater degree in the next chapter when we cover control
logic and loops, which use different blocks of code. Python 3 does not allow mixing of
tabs and spaces for indentation (van Rossum et al., 2001). The recommendation is to
use spaces for indenting (specifically four), unless one is working with code that already
is using tabs for indentation, in which case tabs should be used consistently for inden-
tation. This reduces the processing of the Python interpreter needed to treat all the
possible combinations of tabs and spaces the same. To help visually ensure the proper
indentation, text editors such as Notepad++ have features to show white space (spaces
and tabs). In Notepad++, you can turn this feature on and off through the menu selec-
tions View/Show Symbol and clicking on the selection: “Show White Space and TAB.”

Copyright ©2021 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

https://pypi.org/

34 Introduction to Python Programming

Figure 2.28 is a Python module that has the find_average function defined within it. The
Python module name uses extra underscore characters so that it does not have any spaces in it.
This is important, because when you import Python modules, the file name referenced can’t have
any spaces in it. Figure 2.29 shows how to import and use a function from a different Python
code module. Line 1 of Figure 2.29 uses the import statement to import the code in the Python
module and creates the alias “fam” for the module. Line 9 of the Python code in Figure 2.29 uses
the function in the imported module by referencing the alias, which indicates that the function is
in that module. Figure 2.30 shows the output of executing the code in Figure 2.29, showing the
same output as seen in Figure 2.27. We will make extensive use of Python code modules begin-
ning in Chapter 4.

FIGURE 2.29 FIND AVERAGE USING FUNCTION IN MODULE

FIGURE 2.30 OUTPUT FROM EXECUTION OF CODE USING FUNCTION IN MODULE

STOP, CODE, AND UNDERSTAND!

SCU 2.8 Using Functions in Modules

Download the two files “SCU 2_8.py” and “UserFunction.py” from the companion website and save them either on
your computer or on a removable storage device. Open the file “SCU 2_8.py” in the Python IDLE editor and insert
a line of code to import the UserFunction module so that the code will report the average of the two numbers
entered by the user using the function my _ function, which is in the file “UserFunction.py.” Execute the modi-
fied program after the change to verify that the revised code runs and produces the correct result.

Copyright ©2021 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

Chapter 2 ■ Building Blocks of Programming 35

Lessons learned: In this section, we learned about how we can import Python code from different
modules of code so our code can use their functions. As we will see throughout the book, this is
an important mechanism for using Python code that is in packages.

Chapter Summary

This chapter introduced the building blocks of Python
programming, including Python data types, coding
statements, and functions. We first learned about
some practices to follow when developing code, which
becomes very important when you work with other
people on programming projects. We next learned
about basic elements of Python code, including Python
keywords, objects and classes, variables and data types,
and operators and delimiters, which are combined into
various statements that make up Python code.

We then learned about how to use variables in
assignment statements, using print statements to
visualize our results. We also learned how to use the
Python type function to determine and report the
data type of an object in a Python program and why the
order of operations is important when we have Python
code that performs calculations. We also learned there
are three types of errors in Python: syntax errors,
exceptions, and logic errors. Syntax errors are the
easiest types of errors to resolve and result when we do
not follow the rules for correctly specifying Python code.
Exceptions are the types of errors that occur when we
attempt to do something in Python that is not possible

or not allowed. Logic errors occur when code executes
without terminating with an error message but has
incorrect results.

We also learned about a few functions that Python
already has defined and that one common use of built-in
functions is converting object data types from one type to
another. Next we learned about user-defined functions
and how functions can have arguments (values passed
to them) as well as return values. We saw how we must
be careful when specifying arguments when we call
functions or else errors will result. Next, we learned
about how we can import Python code from different
modules of code so our code can use their functions. As
we will see throughout the book, this is an important
mechanism for using Python code that is in packages.

In the next chapter, we will delve deeper into compound
data types, including lists, tuples, and dictionaries.
We will see how useful these are when working with
data and develop an even deeper understanding of the
capabilities of the Python programming language. We
will also discuss techniques for handling exceptions and
resolving logic errors in our code.

Glossary

Arithmetic operators Symbols used to add, subtract,
multiply, divide, and exponentiate (raise to a power)
values.

Assignment statements Python code statements
used to specify what value something is to take. Read
from right to left, in which you assign the value on the
right-hand side of the equal sign to the variable on the
left-hand side of the equal sign.

Boolean Data type that can have either True or

False logical values.

Classes Used to create objects.

Comments Begin with a pound sign (#). The

interpreter does not process comments.

Concatenation Operation that combines multiple

strings into one string.

Copyright ©2021 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

36 Introduction to Python Programming

Data type Specific attributes that determine the kind
of values a piece of data can have and the kind of
operations performed on the data.

def Python keyword that is at the beginning of every
function definition.

Exception Occurs during Python code execution when
you attempt an action that is not possible or not allowed.

Float Data type, which can have decimal values.

Function Subroutine of code developed to perform
specific tasks.

Indentation The number of spaces and/or tabs at the
beginning of a line of Python code.

Integer Data type that can store whole numbers.

Logic error Occurs when a program executes without
terminating with an error condition but produces
incorrect results.

Method An action that can be done to or with an
object.

Objects The building blocks of Python. Objects or
relations between objects represent all data in a
Python program.

String Data type, which can have text made up of
letters, characters, and numbers. Enclosed in quotes
when referenced in code.

Syntax error Occurs when Python code does not
follow the rules that dictate the specification of
Python code statements.

type function Used to determine the data type of an
object.

Variable Used to store and access values.

 End-of-Chapter Exercises

2.1 Write Python code that uses the input built-in
function to ask the user to enter a whole number
between 1 and 100. The input function always
returns a string value, so use the int built-in
function to convert the value entered to an integer
data type and square the number that the user
entered using the exponentiation operator. Print
a message to the user stating the value that they
entered and the square of the value that they entered.

2.2 Write Python code that uses the input built-in
function to ask the user to enter the year they were
born as a four-digit number. The input function
always returns a string value, so use the int
built-in function to convert the year value entered to
an integer data type and subtract the year entered
from the current year (i.e., 2019). Print a message
to the user stating the value that they entered and
their calculated age. Why might the calculated age
not be correct?

2.3 Write Python code that uses the input built-in
function to ask the user to enter a decimal formatted
number between 1 and 100. The input function
always returns a string value, so use the float

built-in function to convert the value entered to
a float data type and square the number that the
user entered using the exponentiation operator.
Print a message to the user stating the value that
they entered and the square of the value that they
entered.

2.4 Modify the code in Exercise 2.3 to round the values
reported to the user to two decimal places (use the
round built-in function).

2.5 Write Python code that uses the input built-in
function to ask the user to enter a sentence of their
choosing. Use the len built-in function to determine
how many characters were in the string entered and
report this information back to the user.

2.6 Write Python code that uses the input built-in
function to ask the user to enter a weight in pounds.
The input function always returns a string value,
so use the float built-in function to convert the
value entered to a float data type and determine
the equivalent weight in kilograms (you can use
the conversion factor that 1 pound = 0.453592
kilograms). Print a message to the user stating

Copyright ©2021 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

the weight in pounds that they entered and the
equivalent weight in kilograms.

2.7 Write Python code that uses the input built-in
function to ask the user to enter a temperature
in the Fahrenheit temperature scale. The input
function always returns a string value, so use
the float built-in function to convert the value
entered to a float data type and determine

the equivalent temperature in the Celsius
temperature scale (use the conversion factor
°C = (°F – 32) × (5/9)). Print a message to the
user stating the temperature in Fahrenheit that
they entered and the equivalent temperature in
Celsius. You can verify that your code executes
properly by entering in 32°F (equivalent is 0°C)
and 212°F (equivalent is 100°C).

References

Kaefer, P. (2018). Code like it matters: Writing code
that’s readable and shareable. SAS Global Forum
Proceedings. Retrieved from https://www.sas.com/
content/dam/SAS/support/en/sas-global-forum-
proceedings/2018/2520-2018.pdf

Martin, R. C. (2009). Clean code: A handbook of agile
software craftsmanship. Upper Saddle River, NJ:
Prentice Hall.

Python Software Foundation. (2019, June 17). Python
3.7.3 documentation. Retrieved from https://docs
.python.org/3/

van Rossum, G., Warsaw, B., & Coghlan, N. (2001, July 5).
PEP 8—Style guide for Python code. Retrieved from
https://www.python.org/dev/peps/pep-0008/

Chapter 2 ■ Building Blocks of Programming 37

Visit study.sagepub.com/researchmethods/statistics/kaefer-intro-to-python for data sets and code to accompany this text!

Copyright ©2021 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2520-2018.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2520-2018.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2520-2018.pdf
https://docs.python.org/3/
https://docs.python.org/3/
https://www.python.org/dev/peps/pep-0008/

