
Chapter 1

THE LOGIC OF LOGISTIC REGRESSION

Many social phenomena are discrete or qualitative rather than continuous 
or quantitative in nature—an event occurs or it does not occur, a person 
makes one choice but not the other, an individual or group passes from one 
state to another. A person can have a child, die, move (either within or 
across national borders), marry, divorce, enter or exit the labor force, 
receive welfare benefits, vote for one candidate, commit a crime, be 
arrested, quit school, enter college, join an organization, get sick, belong to 
a religion, or act in myriad ways that either involve a characteristic, event, 
or choice. Sometimes continuous scales are measured qualitatively, such as 
for income below the poverty level or birth weight below a specified level. 
Likewise, large social units—groups, organizations, and nations—can 
emerge, break up, go bankrupt, face rebellion, join larger groups, or pass 
from one type of discrete state into another.

Binary discrete phenomena usually take the form of a dichotomous 
indicator or dummy variable. Although it is possible to represent the two 
values with any numbers, employing variables with values of 1 and 0 has 
advantages. The mean of a dummy variable equals the proportion of cases 
with a value of 1 and can be interpreted as a probability.

Regression With a Binary Dependent Variable

A binary dependent variable with values of 0 and 1 seems suitable on the 
surface for use with multiple regression. Regression coefficients have a 
useful interpretation with a dummy dependent variable—they show the 
increase or decrease in the predicted probability of having a characteristic 
or experiencing an event due to a one-unit change in the independent 
variables. Equivalently, they show the change in the predicted proportion 
of respondents with a value of 1 due to a one-unit change in the independent 
variables. Given familiarity with proportions and probabilities, researchers 
should feel comfortable with such interpretations.

The dependent variable itself only takes values of 0 and 1, but the 
predicted values for regression take the form of mean proportions or 
probabilities conditional on the values of the independent variables. The 
higher the predicted value or conditional mean, the more likely that any 
individual with particular scores on the independent variables will have a 
characteristic or experience the event. Linear regression assumes that the 
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conditional proportions or probabilities define a straight line for values of 
the independent variables.

To give a simple example, the 2017 National Health Interview Survey 
asked respondents if they currently smoke cigarettes or not. Assigning 
those who smoke a score of 1 and those who do not a score of 0 creates a 
dummy dependent variable. Taking smoking (S) as a function of years of 
completed education (E) and a dummy variable for gender (G) with men 
coded 1 produces the regression equation:

S = .388 − .018E + .039G

The coefficient for education indicates that for a 1-year increase in 
education, the predicted probability of smoking goes down by .018, the 
proportion smoking goes down by .018, or the percent smoking goes down 
by 1.8. Women respondents with no education have a predicted probability 
of smoking of .388 (the intercept). A woman with 10 years of education has 
a predicted probability of smoking of .388 − (.018 × 10) = .208. One could 
also say that the model predicts 20.8% of such respondents smoke. The 
dummy variable coefficient for gender shows men have a probability of 
smoking .039 higher than for women. With no education, men have a 
predicted probability of smoking of .388 + .039 = .427.

Despite the uncomplicated interpretation of the coefficients for regres-
sion with a dummy dependent variable, the regression estimates face two 
sorts of problems. One type of problem is conceptual in nature, while the 
other type is statistical in nature. The problems may prove serious enough 
to use an alternative to ordinary regression with binary dependent 
variables.

Problems of Functional Form

The conceptual problem with linear regression with a binary dependent 
variable stems from the fact that probabilities have maximum and mini-
mum values of 1 and 0. By definition, probabilities and proportions cannot 
exceed 1 or fall below 0. Yet, the linear regression line will continue to 
extend upward as the values of the independent variables increase, and 
continue to extend downward as the values of the independent variables 
decrease. Depending on the slope of the line and the observed X values, a 
model can give predicted values of the dependent variable above 1 and 
below 0. Such values make no sense and have little predictive use.

A few charts can illustrate the problem. The normal scatterplot of two 
continuous variables shows a cloud of points as in Figure 1.1(a). Here, a 
line through the middle of the cloud of points would minimize the sum of 
squared deviations. Further, at least theoretically, as X extends on to higher 
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or lower levels, so does Y. The same straight line can predict large Y values 
associated with large X values as it can for medium or small values. The 
scatterplot of a relationship of a continuous independent variable to a 
dummy dependent variable in Figure 1.1(b), however, does not portray  
a cloud of points. It instead shows two parallel sets of points. Fitting a 
straight line seems less appropriate here. Any line (except one with a slope 
of 0) will eventually exceed 1 and fall below 0.

Some parts of the two parallel sets of points may contain more cases than 
others, and certain graphing techniques can reveal the density of cases 
along the two lines. For example, jittering reduces overlap of the scatterplot 
points by adding random variation to each case. In Figure 1.2, the jittered 

Figure 1.1  (a) Scatterplot, continuous variables and (b) scatterplot, 
dummy dependent variable.
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distribution for a binary dependent variable—smokes or does not smoke—
by years of education suggests a slight relationship. Cases with higher 
education appear less likely to smoke than cases with lower education. Still, 
Figure 1.2 differs from plots between continuous variables.

Predicted probabilities below 0 or above 1 can occur, depending on the 
skew of the outcome, the range of values of the independent variable, and 
the strength of the relationship. With a skewed binary dependent variable, 
that is with an uneven split in the two categories, predicted values tend to 
fall toward the extremes. In the example of smoking, where the split equals 
15:85, the lowest predicted value of .062 occurs for women with the maxi-
mum education of 18; the highest predicted value of .427 occurs for men 
with the minimum education of 0. However, simply adding age to the 
model produces predicted values below 0 for females aged 75 years and 
over with 18 years of education.

The same problem can occur with a less skewed dependent variable. 
From 1973 to 2016, the General Social Survey (GSS) asked respondents if 
they agree that the use of marijuana should be made legal. With the 30% 
agreeing coded 1 and the 70% disagreeing coded 0, a regression of agree-
ment (M) on years of education (E), a dummy variable for gender (G) with 
males coded 1, and a measure of survey year (Y) with the first year, 1973, 
coded 0 and each year thereafter coded as the years since 1973, gives

M = −.104 + .017E + .083G + .007Y

The intercept for females with no years of education and responding in 
1973 shows the nonsensical predicted probability well below 0. Although a 

Figure 1.2  Jittered scatterplot for a binary dependent variable, smoking 
or nonsmoking, by years of education.
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problem in general, reliance on the assumption of linearity in this particular 
model proves particularly inappropriate.1

Alternative to Linearity

One solution to the boundary problem would assume that any value 
equal to or above 1 should be truncated to the maximum value of 1. The 
regression line would be straight until this maximum value, but afterward 
changes in the independent variables would have no influence on the 
dependent variable. The same would hold for small values, which could be 
truncated at 0. Such a pattern would define sudden discontinuities in the 
relationship, whereby at certain points the effect of X on Y would change 
immediately to 0 (see Figure l.3(a)).

Figure 1.3  (a) Truncated linear relationship and (b) S-shaped curve.
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However, another functional form of the relationship might make 
more theoretical sense than truncated linearity. With a floor and a ceil-
ing, it seems likely that the effect of a unit change in the independent 
variable on the predicted probability would be smaller near the floor or 
ceiling than near the middle. Toward the middle of a relationship, the 
nonlinear curve may approximate linearity, but rather than continuing 
upward or downward at the same rate, the nonlinear curve would bend 
slowly and smoothly so as to approach 0 and 1. As values get closer and 
closer to 0 or 1, the relationship requires a larger and larger change in 
the independent variable to have the same impact as a smaller change in 
the independent variable at the middle of the curve. To produce a 
change in the probability of the outcome from .95 to .96 requires  
a larger change in the independent variable than it does to produce a 
change in the probability from .45 to .46. The general principle is that 
the same additional input has less impact on the outcome near the ceil-
ing or floor, and that increasingly larger inputs are needed to have the 
same impact on the outcome near the ceiling or floor.

Several examples illustrate the nonlinear relationship. If income increases 
the likelihood of owning a home, an increase of 10 thousand dollars of 
income from $70,000 to $80,000 would increase that likelihood more than 
an increase from $500,000 to $510,000. High-income persons would no 
doubt already have a high probability of home ownership, and a $10,000 
increase would do little to increase their already high probability. The same 
would hold for an increase in income from $0 to $10,000: since neither 
income is likely to be sufficient to purchase a house, the increase in income 
would have little impact on ownership. In the middle-range, however, the 
additional $10,000 may make the difference between being able to afford a 
house and not being able to afford a house.

Similarly, an increase of 1 year in age on the likelihood of first marriage 
may have much stronger effects during the late twenties than at younger or 
older ages. Few will marry under age 18 despite growing a year older, and 
few unmarried by 50 will likely marry by age 51. However, the change 
from age 29 to 30 may result in a substantial increase in the likelihood of 
marriage. The same kind of reasoning would apply in numerous other 
instances: the effect of the number of delinquent peers on the likelihood of 
committing a serious crime, the effect of the hours worked by women on 
the likelihood of having a child, the effect of the degree of party identifica-
tion on the support for a political candidate, and the effect of drinking 
behavior on premature death are all likely stronger at the midrange of the 
independent variables than the extremes.

A more appropriate nonlinear relationship would look like that in Fig-
ure l.3(b), where the curve levels off and approaches the ceiling of 1 and 
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the floor of 0. Approximating the curve would require a succession of 
straight lines, each with different slopes. The lines nearer the ceiling and 
floor would have smaller slopes than those in the middle. However, a 
constantly changing curve more smoothly and adequately represents the 
relationship. Conceptually, the S-shaped curve makes better sense than 
the straight line.

Within the range of a sample, the linear regression line may approximate 
a curvilinear relationship by taking the average of the diverse slopes 
implied by the curve. However, the linear relationship still understates the 
actual relationships in the middle and overstates the relationship at the 
extremes (unless the independent variable has values only in a region where 
the curve is nearly linear). Figure 1.4 compares the S-shaped curve with the 
straight line; the gap between the two illustrates the nature of the error and 
the potential inaccuracy of linear regression.

Nonadditivity

The ceiling and floor create another conceptual problem besides nonlin-
earity in regression models of a dichotomous response. Regression typi-
cally assumes additivity—that the effect of one independent variable on the 
dependent variable stays the same regardless of the levels of the other 
independent variables. Models can include selected product terms to 
account for nonadditivity, but a binary dependent variable likely violates 
the additivity assumption for all combinations of the independent variables. 
If the value of one independent variable reaches a sufficiently high level to 
push the probability of the dependent variable to near 1 (or to near 0), then 

Figure 1.4 Linear versus curvilinear relationship.
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the effects of other variables cannot have much influence. Thus, the ceiling 
and floor make the influence of all the independent variables inherently 
nonadditive and interactive.

To return to the smoking example, those persons with 20 years of educa-
tion have such a low probability of smoking that only a small difference 
exists between men and women; in other words, gender has little effect on 
smoking at high levels of education. In contrast, larger gender differences 
likely exist when education is lower and the probability of smoking is 
higher. Although the effect of gender on smoking likely varies with the 
level of education, additive regression models assume that the effect is 
identical for all levels of education (and the effect of education is identical 
for men and women). One can use interaction terms in a regression model 
to partly capture nonadditivity, but that does not address the nonadditivity 
inherent in all relationships in a probability model.

Problems of Statistical Inference

Even if a straight line approximates the nonlinear relationship in some 
instances, other problems emerge that, despite leaving the estimates unbi-
ased, reduce their efficiency. The problems involve the fact that regression 
with a binary dependent variable violates the assumptions of normality and 
homoscedasticity. Both these problems stem from the existence of only two 
observed values for the dependent variable. Linear regression assumes that 
in the population, a normal distribution of error values around the predicted 
Y is associated with each X value, and that the dispersion of the error values 
for each X value is the same. The assumptions imply normal and similarly 
dispersed error distributions.

Yet, with a dummy variable, only two Y values and only two residuals 
exist for any single X value. For any value Xi, the predicted probability 
equals b0 + b1Xi. Therefore, the residuals take the value of

1 – (b0 + b1 Xi) when Yi equals 1,
and

0 – (b0 + b1 Xi) when Yi equals 0.

Even in the population, the distribution of errors for any X value will not be 
normal when the distribution has only two values.

The error term also violates the assumption of homoscedasticity or equal 
variances because the regression error term varies with the value of X. To illus-
trate this graphically, review Figure 1.1(b), which plots the relationship 
between X and a dummy dependent variable. Fitting a straight line that goes 
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   9

from the lower left to the upper right of the figure would define residuals as the 
vertical distance from the points to the line. Near the lower and upper extremes 
of X, where the line comes close to the floor of 0 and the ceiling of 1, the residu-
als are relatively small. Near the middle values of X, where the line falls half-
way between the ceiling and floor, the residuals are relatively large. As a result, 
the variance of the errors is not constant (Greene, 2008, p. 775).2

While normality creates few problems with large samples, heteroscedas-
ticity has more serious implications. The sample estimates of the popula-
tion regression coefficients are unbiased, but they no longer have the 
smallest variance and the sample estimates of the standard errors will be too 
small. Thus, even with large samples, the standard errors in the presence of 
heteroscedasticity will be incorrect, and tests of significance will be biased 
in the direction of being too generous. Using robust standard errors or 
weighted least squares estimates can deal with this problem, but they do not 
solve the conceptual problems of nonlinearity and nonadditivity.

Transforming Probabilities Into Logits

To review, linear regression has problems in dealing with a dependent vari-
able having only two values, a ceiling of 1 and a floor of 0: the same change 
in X has a different effect on Y depending on how close the curve corre-
sponding to any X value comes to the maximum or minimum Y value. We 
need a transformation of the dependent variable that captures the decreas-
ing effects of X on Y as the predicted Y value approaches the floor or ceil-
ing. We need, in other words, to eliminate the floor and ceiling inherent in 
binary outcomes and probabilities.

The logistic function and logit transformation define one way to deal 
with the boundary problem. Although many nonlinear functions can repre-
sent the S-shaped curve (Agresti, 2013, Chapter 7), the logistic or logit 
transformation has become popular because of its desirable properties and 
relative simplicity. The logistic function takes probabilities as a nonlinear 
function of X in a way that represents the S-shaped curve in Figure 1.3(b). 
We will review the logistic function in more detail shortly. For now, simply 
note that the function defines a relationship between the values of X and the 
S-shaped curve in probabilities. As will become clear, the probabilities 
need to be transformed in a way that defines a linear rather than nonlinear 
relationship with X. The logit transformation does this.

Assume that each value of Xi has a probability of having a characteristic 
or experiencing an event, defined as Pi. Since the dependent variable has 
values of only 0 and 1, this Pi must be estimated, but it helps to treat the 
outcome in terms of probabilities for now. Given this probability, the logit 
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transformation involves two steps. First, take the ratio of Pi to 1 – Pi, or the 
odds of the outcome. Second, take the natural logarithm of the odds. The 
logit thus equals

Li = ln [Pi/(1 – Pi)],

or, in short, the logged odds.
It is worth seeing how the equation works with a few numbers. For 

example, if Pi equals .2, the odds equal .25 or .2/.8, and the logit equals 
–1.386, the natural log of the odds. If Pi equals .7, the odds equal 2.33 or 
.7/.3, and the logit equals 0.847. If Pi equals .9, the odds equal 9 or .9/.1, 
and the logit equals 2.197. Although the computational formula to convert 
probabilities into logits is straightforward, it requires some explanation to 
show its usefulness. It turns out to transform the S-shaped nonlinear 
relationship between independent variables and a distribution of probabilities 
into a linear relationship.

Meaning of Odds

The logit begins by transforming probabilities into odds. Probabilities 
vary between 0 and 1, and express the likelihood of an outcome as a propor-
tion of both occurrences and nonoccurrences. Odds or P/(1−P) express the 
likelihood of an occurrence relative to the likelihood of a nonoccurrence. 
Both probabilities and odds have a lower limit of 0, and both express the 
increasing likelihood of an outcome with increasing large positive num-
bers, but otherwise they differ.

Unlike a probability, odds have no upper bound or ceiling. As a probabil-
ity gets closer to 1, the numerator of the odds becomes larger relative to the 
denominator, and the odds become an increasingly large number. The odds 
thus increase greatly when the probabilities change only slightly near their 
upper boundary of 1. For example, probabilities of .99, .999, .9999, .99999, 
and so on result in odds of 99, 999, 9999, 99999, and so on. Tiny changes 
in probabilities result in huge changes in the odds and show that the odds 
increase toward infinity as the probabilities come closer and closer to 1.

To illustrate the relationship between probabilities and odds, examine the 
values below:

Pi .01 .1 .2 .3 .4 .5 .6 .7 .8 .9 .99
1 – Pi .99 .9 .8 .7 .6 .5 .4 .3 .2 .1 .01
Odds .01 .111 .25 .429 .667 1 1.5 2.33 4 9 99

Note that when the probability equals .5, the odds equal 1 or are even. As 
the probabilities increase toward one, the odds no longer have the ceiling 
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   11

of the probabilities. As the probabilities decrease toward 0, however, the 
odds still approach 0. At least at one end, then, the transformation allows 
values to extend linearly beyond the limit of 1.

Manipulating the formula for odds gives further insight into their rela-
tionship to probabilities. Beginning with the definition of odds (Oi) as the 
ratio of the probability to one minus the probability, we can with simple 
algebra express the probability in terms of odds:

Pi/(1 – Pi) = Oi implies that Pi = Oi/(1 + Oi).

The probability equals the odds divided by one plus the odds.3
Based on this formula, the odds can increase to infinity, but the probabil-

ity can never equal or exceed one. No matter how large the odds become in 
the numerator, they will always be smaller by one than the denominator. Of 
course, as the odds become large, the gap between the odds and the odds 
plus 1 will become relatively small and the probability will approach (but 
not reach) one. To illustrate, the odds of 9 translate into a probability of .9, 
as 9/(9+1) = .9, the odds of 999 translate into a probability of .999 
(999/1000 = .999), and the odds of 9999 translate into a probability of 
.9999, and so on.

Conversely, the probability can never fall below 0. As long as the 
odds equal or exceed 0, the probability must equal or exceed 0. The 
smaller the odds in the numerator become, the larger the relative size of 
the 1 in the denominator. The probability comes closer and closer to 0 
as the odds come closer and closer to 0.

Usually, the odds are expressed as a single number, taken implicitly as a 
ratio to 1. Odds above 1 mean the outcome is more likely to occur than to 
not occur. Thus, odds of 10 imply the outcome will occur 10 times for each 
time it does not occur. Since the single number can be a fraction, there is 
no need to keep both the numerator or denominator as a whole number. The 
odds of 7 to 3 can be expressed equally well as a single number of 2.33 (to 
1). Even odds equal 1 (1 occurrence to 1 nonoccurrence). Odds below 1 
mean the outcome is less likely to occur than it is to not occur. If the prob-
ability equals .3, the odds are .3/.7 or .429. This means the outcome occurs 
.429 times per each time it does not occur. It could also be expressed as 42.9 
occurrences per 100 nonoccurrences.

Comparing Odds

Expressed as a single number, any odds can be compared to another 
odds, only the comparison is based on multiplying rather than on adding. 
Odds of 9 to 1 are three times higher than odds of 3 to 1. Odds of 3 are 
one-third the size of odds of 9. Odds of .429 are .429 the size of even odds 
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of 1, or half the size of odds of .858. In each example, one odds is expressed 
as a multiple of the other.

It is often useful to compare two different odds as a ratio. Consider the 
odds of an outcome for two different groups. The ratio of odds of 8 and 2 
equals 4, which shows that the odds of the former group are four times (or 
400%) larger than the latter group. If the odds ratio is below 1, then the 
odds of the first group are lower than the second group. An odds ratio of .5 
means the odds of the first group are only half or 50% the size of the second 
group. The closer the odds ratio to 0, the lower the odds of the first group 
to the second. An odds ratio of one means the odds of both groups are 
identical. Finally, if the odds ratio is above one, the odds of the first group 
are higher than the second group. The greater the odds ratio, the higher the 
odds of the first group to the second.

To prevent confusion, keep in mind the distinction between odds and odds 
ratios. Odds refer to a ratio of probabilities, while odds ratios refer to ratios of 
odds (or a ratio of probability ratios). According to the 2016 GSS, for example, 
65.9% of men and 57.2% of women favor legalization of marijuana. Since the 
odds of support for men equal 1.93 (.659/.341), it indicates that around 1.9 men 
support legalization for 1 who does not. The odds of support for legalization 
among women equal 1.34 (.572/.428) or about 1.3 women support legalization 
for 1 who does not. The ratio of odds of men to women equals 1.93/1.34 or 
1.44. This odds ratio is a group comparison. It reflects the higher odds of sup-
porting legalization for men than women. It means specifically that 1.44 men 
support legalization for each women who does.

In summary, reliance on odds rather than probabilities provides for 
meaningful interpretation of the likelihood of an outcome, and it eliminates 
the upper boundary. Odds will prove useful later for interpreting coeffi-
cients, but note now that creating odds represents the first step of the logit 
transformation.

Logged Odds

Taking the natural log of the odds eliminates the floor of 0 much as 
transforming probabilities into odds eliminates the ceiling of 1. Taking the 
natural log of:

odds above 0 but below 1 produce negative numbers;
odds equal to 1 produce 0; and
odds above 1 produce positive numbers.

(The logs of values equal to or below 0 do not exist; see the Appendix for 
an introduction to logarithms and their properties.)
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The first property of the logit, then, is that, unlike a probability, it has no 
upper or lower boundary. The odds eliminate the upper boundary of prob-
abilities, and the logged odds eliminate the lower boundary of probabilities 
as well. To see this, if Pi = 1, the logit is undefined because the odds of  
1/(1 − 1) or 1/0 do not exist. As the probability comes closer and closer  
to 1, however, the logit moves toward positive infinity. If Pi = 0, the logit 
is undefined because the odds equal zero 0/(1 − 0) = 0 and log of 0 does not 
exist. As the probability comes closer and closer to 0, however, the logit 
proceeds toward negative infinity. Thus, the logits vary from negative infin-
ity to positive infinity. The ceiling and floor of the probabilities (and the 
floor of the odds) disappear.

The second property is that the logit transformation is symmetric around 
the midpoint probability of .5. The logit when Pi = .5 is 0 (.5/.5 = 1, and the 
log of 1 equals 0). Probabilities below .5 result in negative logits because 
the odds fall below 1 and above 0; Pi is smaller than 1 – Pi, thereby 
resulting in a fraction, and the log of a fraction results in a negative number 
(see the Appendix). Probabilities above .5 result in positive logits because 
the odds exceed 1 (Pi is larger than 1 – Pi). Furthermore, probabilities the 
same distance above and below .5 (e.g., .6 and .4, .7 and .3, .8 and .2)  
have the same logits, but different signs (e.g., the logits for these 
probabilities equal, in order, .405 and –.405, .847 and –.847, 1.386 and 
–1.386). The distance of the logit from 0 reflects the distance of the 
probability from .5 (again noting, however, that the logits do not have 
boundaries as do the probabilities).

The third property is that the same change in probabilities translates into 
different changes in the logits. The principle is that as Pi comes closer to 0 
and 1, the same change in the probability translates into a greater change in 
the logged odds. You can see this by example:

Pi      .1 .2 .3 .4 .5 .6 .7 .8 .9
1 − Pi      .9 .8 .7 .6 .5 .4 .3 .2 .1
Odds      .111 .25 .429 .667 1 1.5 2.33 4 9
Logit –2.20 −1.39  −.847 –.405 0 .405 .847 1.39 2.20

A change in probabilities of .1 from .5 to .6 (or from .5 to .4) results in a 
change of .405 in the logit, whereas the same probability change of .1 from 
.8 to .9 (or from .2 to .1) results in a change of .810 in the logit. The change 
in the logit for the same change in the probability is twice as large at this 
extreme as in the middle. To repeat, the general principle is that small dif-
ferences in probabilities result in increasingly larger differences in logits 
when the probabilities are near the bounds of 0 and 1.
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Linearizing the Nonlinear

It helps to view the logit transformation as linearizing the inherent nonlin-
ear relationship between X and the probability of Y. We would expect the 
same change in X to have a smaller impact on the probability of Y near the 
floor or ceiling than near the midpoint. Because the logit expands or 
stretches the probabilities of Y at extreme values relative to the values near 
the midpoint, the same change in X comes to have similar effects through-
out the range of the logit transformation of the probability of Y. Without a 
floor or ceiling, in other words, the logit can relate linearly to changes in X. 
One can now treat a relationship between X and the logit transformation as 
linear. The logit transformation straightens out the nonlinear relationship 
between X and the original probabilities.

Conversely, the linear relationship between X and the logit implies a 
nonlinear relationship between X and the original probabilities. A unit 
change in the logit results in smaller differences in probabilities at high and 
low levels than at levels in the middle. Just as we translate probabilities into 
logits, we can translate logits into probabilities (the formula to do this is 
discussed shortly):

Logit –3 –2 –1 0 1 2 3
Pi .047 .119 .269 .5 .731 .881 .953
Change — .072 .150 .231 .231 .150 .072

A one-unit change in the logit translates into a greater change in proba-
bilities near the midpoint than near the extremes. In other words, linearity 
in logits defines a theoretically meaningful nonlinear relationship with the 
probabilities.

Obtaining Probabilities From Logits

The logit transformation defines a linear relationships between the inde-
pendent variables and a binary dependent variable. The linear relationship 
of X with the predicted logit appears in the following regression model:

ln[Pi/(1 – Pi)] = b0 + b1Xi .

Like any linear equation, the coefficient b0 shows the intercept or logged 
odds when X equals 0 and the b1 coefficient shows the slope or the change 
in the logged odds for a unit change in X. The difference is that the 
dependent variable has been transformed from probabilities into logged 
odds.
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To express the probabilities rather than the logit as a function of X, first 
take each side of the equation as an exponent. Because the exponent of a 
logarithm of a number equals the number itself (e of the ln X equals X), 
exponentiation or taking the exponential eliminates the logarithm on the 
left side of the equation:

P P e e ei i
b b X b b Xi i/1 0 1 0 1� � � �� .

Furthermore, the equation can be presented in multiplicative form because 
the exponential of X +Y equals the exponential of X times the exponential 
of Y. Thus, the odds change as a function of the coefficients treated as expo-
nents. Solving for Pi gives the following formula4:

P e ei
b b X b b Xi i� �� �( ) ( ).0 1 0 11/

To simplify, define the predicted logit Li as ln[Pi/(1 – Pi)], which is equal 
to b0 + b1Xi. We can then replace the longer formula by Li in the equation, 
remembering that Li is the logged odds predicted by the value of Xi and the 
coefficients b0 and b1. Then

P e ei
L Li i� �( ) ( )./ 1

This formula takes the probability as a ratio of the exponential of the logit 
to 1 plus the exponential of the logit. Given that eLi produces odds, the 
formula corresponds to the equation Pi = Oi/(1+Oi) presented earlier.

Moving from logits to exponents of logits to probabilities shows

L –4.61 –2.30 –1.61 –.223 0 1.61 2.30 4.61 6.91
eL .01 .1 .2 .8 1 5 10 100 1000
1+ eL 1.01 1.1 1.2 1.8 2 6 11 101 1001
P .010 .091 .167 .444 .5 .833 .909 .990 .999

Note first that the exponentials of the negative logits fall between 0 and 1, 
and that the exponentials of the positive logits exceed 1. Note also that the 
ratio of the exponential to the exponential plus 1 will always fall below 
one—the denominator will always exceed the numerator by 1. The 
transformation of logits into probabilities replicates the S-shaped curve in 
Figures 1.3(b) and 1.4. With logits defining the X-axis and probabilities 
defining the Y-axis, the logits range from negative infinity to positive 
infinity, but the probabilities will stay within the bounds of 0 and 1.
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Consider how this transformation demonstrates nonlinearity. For a one-
unit change in X, L changes by a constant amount but P does not. The 
exponents in the formula for Pi make the relationship nonlinear. Consider 
an example. If Li = 2 +.3Xi, the logged odds change by .3 for a one-unit 
change in X regardless of the level of X. If X changes from 1 to 2, L changes 
from 2 + .3 or 2.3 to 2 + .3 × 2 or 2.6. If X changes from 11 to 12, L changes 
from 5.3 to 5.6. In both cases, the change in L is identical. This defines 
linearity.

Take the same values of X, and the L values they give, and note the 
changes they imply in the probabilities:

X 1 2 11 12
L 2.3 2.6 5.3 5.6
eL 9.97 13.46 200.3 270.4
1 + eL 10.97 14.46 201.3 271.4
P  .909  .931  .995  .996
Change  .022  .001

The same change in L due to a unit change in X results in a greater change 
in the probabilities at lower levels of X and P than at higher levels. The 
same would show at the other end of the probability distribution.

This nonlinearity between the logit and the probability creates a 
fundamental problem of interpretation. We can summarize the effect of X 
on the logit simply in terms of a single linear coefficient, but we cannot do 
the same with the probabilities: the effect of X on the probability varies 
with the value of X and the level of the probability. The complications in 
interpreting the effects on probabilities require a separate chapter on the 
meaning of logistic regression coefficients. However, dealing with problems 
of interpretation proves easier having fully discussed the logic of the logit 
transformation.

One last note. For purposes of calculation, the formula for probabilities 
as a function of the independent variables and coefficients takes a some-
what simpler but less intuitive form:

P e e

P e

P e

i
b b X b b X

i
b b X

i

i i

i

� �

� �

� �

� �

� �

�

( ) ( ),

( ),

(

( )

0 1 0 1

0 1

1

1 1

1 1

/

/

/ LLi ).
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This gives the same result as the other formula.5 If the logit equals 
–2.302, then we must solve for P = e–2.302/1+ e–2.302 or 1/1+ e–(–2.302). The 
exponential of –2.302 equals approximately .1, and the exponential of the 
negative of –2.302 or 2.302 equals 9.994. Thus, the probability equals 
.1/1.1 or .091, or calculated alternatively equals 1/1 + 9.994 or .091. The 
same calculations can be done for any other logit value to get 
probabilities.

Summary

This chapter reviews how the logit transforms a dependent variable having 
inherent nonlinear relationships with a set of independent variables into a 
dependent variable having linear relationships with a set of independent 
variables. Logistic regression models (also called logit models) thus esti-
mate the linear determinants of the logged odds or logit rather than the 
nonlinear determinants of the probabilities. Obtaining these estimates 
involves complexities left until later chapters. In the meantime, however, it 
helps to view logistic regression as analogous to linear regression on a 
dependent variable that has been transformed to remove the floor and 
ceiling.

Another justification of the logistic regression model and the logit trans-
formation takes a different approach than offered in this chapter. It assumes 
that an underlying, unobserved, or latent continuous dependent variable 
exists. It then derives the logistic regression model by making assumptions 
about the shape of the distribution of the underlying unobserved values and 
its relationship to the observed values of 0 and 1 for the dependent variable. 
This derivation ends up with the same logistic regression model but offers 
some insights that may be useful. See, for example, Long (1997, pp. 40–51), 
Maddala and Lahiri (2009, p. 333), or Greene (2008, pp. 776–777).6

In linearizing the nonlinear relationships, logistic regression also shifts 
the interpretation of coefficients from changes in probabilities to less intui-
tive changes in logged odds. The loss of interpretability with the logistic 
coefficients, however, is balanced by the gain in parsimony: the linear 
relationship with the logged odds can be summarized with a single coeffi-
cient, while the nonlinear relationship with the probabilities is less easily 
summarized. Efforts to interpret logistic regression coefficients in mean-
ingful and intuitive ways define the topic of the next chapter.
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