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After reading this chapter, you should be able to:

1 Identify the four steps of hypothesis testing.

2 Define null hypothesis, alternative hypothesis, 
level of significance, test statistic, p value, and 
statistical significance.

3 Define Type I error and Type II error, and identify the 
type of error that researchers control.

4 Calculate the one-independent sample z test and 
interpret the results.

5 Distinguish between a one-tailed and two-tailed test, 
and explain why a Type III error is possible only with 
one-tailed tests.

6 Explain what effect size measures and compute a 
Cohen’s d for the one-independent sample z test.

7 Define power and identify six factors that influence power.

8 Summarize the results of a one-independent sample 
z test in American Psychological Association (APA) 
format.
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8.1 INFERENTIAL STATISTICS AND HYPOTHESIS TESTING

We use inferential statistics because it allows us to measure behavior in samples to 
learn more about the behavior in populations that are often too large or inaccessi­
ble. We use samples because we know how they are related to populations. For 
example, suppose the average score on a standardized exam in a given population is 
1,000. In Chapter 7, we showed that the sample mean as an unbiased estimator of 
the population mean—if we selected a random sample from a population, then on 
average the value of the sample mean will equal the population mean. In our exam­
ple, if we select a random sample from this population with a mean of 1,000, then 
on average, the value of a sample mean will equal 1,000. On the basis of the central 
limit theorem, we know that the probability of selecting any other sample mean 
value from this population is normally distributed.

In behavioral research, we select samples to learn more about populations of 
interest to us. In terms of the mean, we measure a sample mean to learn more about 
the mean in a population. Therefore, we will use the sample mean to describe the 
population mean. We begin by stating the value of a population mean, and then we 
select a sample and measure the mean in that sample. On average, the value of the 
sample mean will equal the population mean. The larger the difference or discrep­
ancy between the sample mean and population mean, the less likely it is that we 
could have selected that sample mean, if the value of the population mean is cor­
rect. This type of experimental situation, using the example of standardized exam 
scores, is illustrated in Figure 8.1.

µ = 1000

We expect the 
sample mean to be 
equal to the 
population mean.  

FIGURE 8.1

The sampling distribution for a 
population mean is equal to 1,000. 
If 1,000 is the correct population 
mean, then we know that, on 
average, the sample mean will 
equal 1,000 (the population mean). 
Using the empirical rule, we know 
that about 95% of all samples 
selected from this population will 
have a sample mean that falls 
within two standard deviations 
(SD) of the mean. It is therefore 
unlikely (less than a 5% 
probability) that we will measure a 
sample mean beyond 
2 SD from the population mean, if 
the population mean is indeed 
correct.

The method in which we select samples to learn more about characteristics in 
a given population is called hypothesis testing. Hypothesis testing is really a 
systematic way to test claims or ideas about a group or population. To illustrate, 
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suppose we read an article stating that children in the United States watch an aver­
age of 3 hours of TV per week. To test whether this claim is true, we record the time 
(in hours) that a group of 20 American children (the sample), among all children in 
the United States (the population), watch TV. The mean we measure for these 20 
children is a sample mean. We can then compare the sample mean we select to the 
population mean stated in the article.

Hypothesis testing or significance testing is a method for testing a claim or 
hypothesis about a parameter in a population, using data measured in a 
sample. In this method, we test some hypothesis by determining the 
likelihood that a sample statistic could have been selected, if the hypothesis 
regarding the population parameter were true.

The method of hypothesis testing can be summarized in four steps. We will 
describe each of these four steps in greater detail in Section 8.2.

 1. To begin, we identify a hypothesis or claim that we feel should be tested. 
For example, we might want to test the claim that the mean number of 
hours that children in the United States watch TV is 3 hours.

 2. We select a criterion upon which we decide that the claim being tested is 
true or not. For example, the claim is that children watch 3 hours of TV per 
week. Most samples we select should have a mean close to or equal to 
3 hours if the claim we are testing is true. So at what point do we decide that 
the discrepancy between the sample mean and 3 is so big that the claim 
we are testing is likely not true? We answer this question in this step of 
hypothesis testing.

 3. Select a random sample from the population and measure the sample mean. 
For example, we could select 20 children and measure the mean time (in 
hours) that they watch TV per week.

 4. Compare what we observe in the sample to what we expect to observe if 
the claim we are testing is true. We expect the sample mean to be around 
3 hours. If the discrepancy between the sample mean and population mean 
is small, then we will likely decide that the claim we are testing is indeed 
true. If the discrepancy is too large, then we will likely decide to reject the 
claim as being not true.

1. On average, what do we expect the sample mean to be equal to?

2. True or false: Researchers select a sample from a population to learn more about 
characteristics in that sample.

NOTE: Hypothesis testing is 

the method of testing whether 

claims or hypotheses regarding 

a population are likely to be 

true.

DEFINITION

LEARNING  
CHECK 1

Answers: 1. The population mean; 2. False. Researchers select a sample from a population to learn more about 

characteristics in the population that the sample was selected from.



4 P A R T  I I I :  P R O B A B I L I T Y  A N D  T H E  F O U N D A T I O N S  O F  I N F E R E N T I A L  S T A T I S T I C S

8.2 FOUR STEPS TO HYPOTHESIS TESTING

The goal of hypothesis testing is to determine the likelihood that a population 
parameter, such as the mean, is likely to be true. In this section, we describe the four 
steps of hypothesis testing that were briefly introduced in Section 8.1:

 Step 1: State the hypotheses.

 Step 2: Set the criteria for a decision.

 Step 3: Compute the test statistic.

 Step 4: Make a decision.

Step 1: State the hypotheses. We begin by stating the value of a population mean 
in a null hypothesis, which we presume is true. For the children watching TV 
example, we state the null hypothesis that children in the United States watch an 
average of 3 hours of TV per week. This is a starting point so that we can decide 
whether this is likely to be true, similar to the presumption of innocence in a 
courtroom. When a defendant is on trial, the jury starts by assuming that the 
defendant is innocent. The basis of the decision is to determine whether this 
assumption is true. Likewise, in hypothesis testing, we start by assuming that the 
hypothesis or claim we are testing is true. This is stated in the null hypothesis. The 
basis of the decision is to determine whether this assumption is likely to be true.

The null hypothesis (H0), stated as the null, is a statement about a population 
parameter, such as the population mean, that is assumed to be true.

The null hypothesis is a starting point. We will test whether the value 
stated in the null hypothesis is likely to be true.

Keep in mind that the only reason we are testing the null hypothesis is because 
we think it is wrong. We state what we think is wrong about the null hypothesis in 
an alternative hypothesis. For the children watching TV example, we may have 
reason to believe that children watch more than (>) or less than (<) 3 hours of TV 
per week. When we are uncertain of the direction, we can state that the value in the 
null hypothesis is not equal to (≠) 3 hours.

In a courtroom, since the defendant is assumed to be innocent (this is the null 
hypothesis so to speak), the burden is on a prosecutor to conduct a trial to show 
evidence that the defendant is not innocent. In a similar way, we assume the null 
hypothesis is true, placing the burden on the researcher to conduct a study to show 
evidence that the null hypothesis is unlikely to be true. Regardless, we always make 
a decision about the null hypothesis (that it is likely or unlikely to be true). The 
alternative hypothesis is needed for Step 2.

An alternative hypothesis (H1) is a statement that directly contradicts a null 
hypothesis by stating that that the actual value of a population parameter is 
less than, greater than, or not equal to the value stated in the null hypothesis.

The alternative hypothesis states what we think is wrong about the null 
hypothesis, which is needed for Step 2.

NOTE: In hypothesis testing, 

we conduct a study to test 

whether the null hypothesis is 

likely to be true.

DEFINITION

DEFINITION
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Step 2: Set the criteria for a decision. To set the criteria for a decision, we state the 
level of significance for a test. This is similar to the criterion that jurors use in a 
criminal trial. Jurors decide whether the evidence presented shows guilt beyond a 
reasonable doubt (this is the criterion). Likewise, in hypothesis testing, we collect 
data to show that the null hypothesis is not true, based on the likelihood of selecting 
a sample mean from a population (the likelihood is the criterion). The likelihood or 
level of significance is typically set at 5% in behavioral research studies. When the 
probability of obtaining a sample mean is less than 5% if the null hypothesis were 
true, then we conclude that the sample we selected is too unlikely and so we reject 
the null hypothesis.

Level of significance, or significance level, refers to a criterion of judgment 
upon which a decision is made regarding the value stated in a null hypothesis. 
The criterion is based on the probability of obtaining a statistic measured in a 
sample if the value stated in the null hypothesis were true.

In behavioral science, the criterion or level of significance is typically set at 
5%. When the probability of obtaining a sample mean is less than 5% if the 
null hypothesis were true, then we reject the value stated in the null 
hypothesis.

The alternative hypothesis establishes where to place the level of significance. 
Remember that we know that the sample mean will equal the population mean on 
average if the null hypothesis is true. All other possible values of the sample mean 
are normally distributed (central limit theorem). The empirical rule tells us that at 
least 95% of all sample means fall within about 2 standard deviations (SD) of the 
population mean, meaning that there is less than a 5% probability of obtaining a 

MAKING SENSE:  Testing the Null Hypothesis

A decision made in hypothesis testing centers on the null hypothesis. This 
means two things in terms of making a decision:

1. Decisions are made about the null hypothesis. Using the courtroom 
analogy, a jury decides whether a defendant is guilty or not guilty. The 
jury does not make a decision of guilty or innocent because the defendant 
is assumed to be innocent. All evidence presented in a trial is to show 
that a defendant is guilty. The evidence either shows guilt (decision: 
guilty) or does not (decision: not guilty). In a similar way, the null 
hypothesis is assumed to be correct. A researcher conducts a study show­
ing evidence that this assumption is unlikely (we reject the null hypoth­
esis) or fails to do so (we retain the null hypothesis).

2. The bias is to do nothing. Using the courtroom analogy, for the same 
reason the courts would rather let the guilty go free than send the inno­
cent to prison, researchers would rather do nothing (accept previous 
notions of truth stated by a null hypothesis) than make statements that 
are not correct. For this reason, we assume the null hypothesis is correct, 
thereby placing the burden on the researcher to demonstrate that the 
null hypothesis is not likely to be correct.

DEFINITION
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sample mean that is beyond 2 SD from the population mean. For the children 
watching TV example, we can look for the probability of obtaining a sample mean 
beyond 2 SD in the upper tail (greater than 3), the lower tail (less than 3), or both 
tails (not equal to 3). Figure 8.2 shows that the alternative hypothesis is used to 
determine which tail or tails to place the level of significance for a hypothesis test.

Step 3: Compute the test statistic. Suppose we measure a sample mean equal to 
4 hours per week that children watch TV. To make a decision, we need to evaluate 
how likely this sample outcome is, if the population mean stated by the null 
hypothesis (3 hours per week) is true. We use a test statistic to determine this 
likelihood. Specifically, a test statistic tells us how far, or how many standard 
deviations, a sample mean is from the population mean. The larger the value of the 
test statistic, the further the distance, or number of standard deviations, a sample 
mean is from the population mean stated in the null hypothesis. The value of the 
test statistic is used to make a decision in Step 4.

The test statistic is a mathematical formula that allows researchers to 
determine the likelihood of obtaining sample outcomes if the null hypothesis 
were true. The value of the test statistic is used to make a decision regarding 
the null hypothesis.

Step 4: Make a decision. We use the value of the test statistic to make a decision 
about the null hypothesis. The decision is based on the probability of obtaining a 
sample mean, given that the value stated in the null hypothesis is true. If the 

NOTE: The level of 

significance in hypothesis 

testing is the criterion we 

use to decide whether the 

value stated in the null 

hypothesis is likely to be true.

NOTE: We use the value of the 

test statistic to make a decision 

regarding the null hypothesis.

µ = 3

We expect the 
sample mean to be 
equal to the 
population mean.  

µ = 3

µ = 3

H1: Children 
watch more 
than 3 hours of 
TV per week. 

H1: Children 
watch less than 
3 hours of TV 
per week. 

H1: Children 
do not watch 
3 hours of 
TV per week. 

FIGURE 8.2

The alternative hypothesis 
determines whether to place 
the level of significance in one 
or both tails of a sampling 
distribution. Sample means 
that fall in the tails are 
unlikely to occur (less than a 
5% probability) if the value 
stated for a population mean 
in the null hypothesis is true.

DEFINITION
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probability of obtaining a sample mean is less than 5% when the null hypothesis is 
true, then the decision is to reject the null hypothesis. If the probability of obtaining 
a sample mean is greater than 5% when the null hypothesis is true, then the 
decision is to retain the null hypothesis. In sum, there are two decisions a researcher 
can make:

 1. Reject the null hypothesis. The sample mean is associated with a low proba­
bility of occurrence when the null hypothesis is true.

 2. Retain the null hypothesis. The sample mean is associated with a high proba­
bility of occurrence when the null hypothesis is true.

The probability of obtaining a sample mean, given that the value stated in the 
null hypothesis is true, is stated by the p value. The p value is a probability: It varies 
between 0 and 1 and can never be negative. In Step 2, we stated the criterion or 
probability of obtaining a sample mean at which point we will decide to reject the 
value stated in the null hypothesis, which is typically set at 5% in behavioral research. 
To make a decision, we compare the p value to the criterion we set in Step 2.

A p value is the probability of obtaining a sample outcome, given that the 
value stated in the null hypothesis is true. The p value for obtaining a sample 
outcome is compared to the level of significance.

Significance, or statistical significance, describes a decision made concerning a 
value stated in the null hypothesis. When the null hypothesis is rejected, we reach 
significance. When the null hypothesis is retained, we fail to reach significance.

When the p value is less than 5% (p < .05), we reject the null hypothesis. We will 
refer to p < .05 as the criterion for deciding to reject the null hypothesis, although 
note that when p = .05, the decision is also to reject the null hypothesis. When the 
p value is greater than 5% (p > .05), we retain the null hypothesis. The decision to 
reject or retain the null hypothesis is called significance. When the p value is less 
than .05, we reach significance; the decision is to reject the null hypothesis. When 
the p value is greater than .05, we fail to reach significance; the decision is to retain 
the null hypothesis. Figure 8.3 shows the four steps of hypothesis testing.

1. State the four steps of hypothesis testing.

2. The decision in hypothesis testing is to retain or reject which hypothesis: the 
null or alternative hypothesis?

3. The criterion or level of significance in behavioral research is typically set at 
what probability value?

4. A test statistic is associated with a p value less than .05 or 5%. What is the deci­
sion for this hypothesis test?

5. If the null hypothesis is rejected, then did we reach significance?

NOTE: Researchers make 

decisions regarding the null 

hypothesis. The decision can 

be to retain the null (p > .05) 

or reject the null (p < .05).

DEFINITION

LEARNING  
CHECK 2

Answers: 1. Step 1: State the null and alternative hypothesis. Step 2: Determine the level of significance. 

Step 3: Compute the test statistic. Step 4: Make a decision; 2. Null; 3. A .05 or 5% likelihood for obtaining a sample 

outcome; 4. Reject the null; 5. Yes.
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8.3  HYPOTHESIS TESTING AND 
SAMPLING DISTRIBUTIONS

The logic of hypothesis testing is rooted in an understanding of the sampling 
distribution of the mean. In Chapter 7, we showed three characteristics of the 
mean, two of which are particularly relevant in this section:

 1. The sample mean is an unbiased estimator of the population mean. On 
average, a randomly selected sample will have a mean equal to that in the 
population. In hypothesis testing, we begin by stating the null hypothesis. 
We expect that, if the null hypothesis is true, then a random sample selected 
from a given population will have a sample mean equal to the value stated 
in the null hypothesis.

 2. Regardless of the distribution in the population, the sampling distribution 
of the sample mean is normally distributed. Hence, the probabilities of all 
other possible sample means we could select are normally distributed. Using 
this distribution, we can therefore state an alternative hypothesis to locate 
the probability of obtaining sample means with less than a 5% chance of 
being selected if the value stated in the null hypothesis is true. Figure 8.2 
shows that we can identify sample mean outcomes in one or both tails.

-------------------------------------------------- 
Level of Significance (Criterion) 

-------------------------------------------------- 

POPULATION

STEP 1: State the hypotheses. 
A researcher states a null 
hypothesis about a value in the 
population (H0) and an 
alternative hypothesis that 
contradicts the null hypothesis.

Conduct a study 
with a sample 

selected from a 
population.

STEP 2: Set the criteria for a 
decision. A criterion is set upon 
which a researcher will decide 
whether to retain or reject the 
value stated in the null 
hypothesis.

A sample is selected from the 
population, and a sample mean 
is measured.  

Measure data 
and compute 
a test statistic. 

STEP 3: Compute the test 
statistic. This will produce a 
value that can be compared to 
the criterion that was set before 
the sample was selected.

STEP 4: Make a decision.  
If the probability of obtaining a 
sample mean is less than 5% 
when the null is true, then reject 
the null hypothesis. 
If the probability of obtaining a 
sample mean is greater than 5% 
when the null is true, then 
retain the null hypothesis. 

FIGURE 8.3

A summary of hypothesis testing.
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1. For the following statement, write increases or decreases as an answer. The like­
lihood that we reject the null hypothesis (increases or decreases):

a. The closer the value of a sample mean is to the value stated by the null 
hypothesis?

b. The further the value of a sample mean is from the value stated in the null 
hypothesis?

2. A researcher selects a sample of 49 students to test the null hypothesis that the 
average student exercises 90 minutes per week. What is the mean for the sam­
pling distribution for this population of interest if the null hypothesis is true?

To locate the probability of obtaining a sample mean in a sampling distribution, 
we must know (1) the population mean and (2) the standard error of the mean 
(SEM; introduced in Chapter 7). Each value is entered in the test statistic formula 
computed in Step 3, thereby allowing us to make a decision in Step 4. To review, 
Table 8.1 displays the notations used to describe populations, samples, and sampling 
distributions. Table 8.2 summarizes the characteristics of each type of distribution.

Characteristic Population Sample Sampling Distribution

Mean m M or X
–

mM = m

Variance s2 s2 or SD2

σ σ
M n
2

2

=

Standard 
deviation

s s or SD σ σ
M n

=

TABLE 8.1 A review of the notation used for the mean, variance, and standard deviation in population, 
sample, and sampling distributions.

Population Distribution Sample Distribution Distribution of Sample Means

What is it? Scores of all persons in a 
population

Scores of a select 
portion of persons from 
the population 

All possible sample means that 
can be drawn, given a certain 
sample size

Is it accessible? Typically, no Yes Yes

What is the shape? Could be any shape Could be any shape Normally distributed 

TABLE 8.2 A review of the key differences between population, sample, and sampling distributions.

LEARNING  
CHECK 3

Answers: 1. (a) Decreases, (b) Increases; 2. 90 minutes.
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We investigate each decision alternative in this section. Since we will observe a 
sample, and not a population, it is impossible to know for sure the truth in the 
population. So for the sake of illustration, we will assume we know this. This 
assumption is labeled as truth in the population in Table 8.3. In this section, we will 
introduce each decision alternative.

DECISION: RETAIN THE NULL HYPOTHESIS

When we decide to retain the null hypothesis, we can be correct or incorrect. The 
correct decision is to retain a true null hypothesis. This decision is called a null 
result or null finding. This is usually an uninteresting decision because the deci­
sion is to retain what we already assumed: that the value stated in the null hypoth­
esis is correct. For this reason, null results alone are rarely published in behavioral 
research.

The incorrect decision is to retain a false null hypothesis. This decision is an 
example of a Type II error, or b error. With each test we make, there is always 
some probability that the decision could be a Type II error. In this decision, we 
decide to retain previous notions of truth that are in fact false. While it’s an error, 
we still did nothing; we retained the null hypothesis. We can always go back and 
conduct more studies.

8.4 MAKING A DECISION: TYPES OF ERROR

In Step 4, we decide whether to retain or reject the null hypothesis. Because we are 
observing a sample and not an entire population, it is possible that a conclusion 
may be wrong. Table 8.3 shows that there are four decision alternatives regarding 
the truth and falsity of the decision we make about a null hypothesis:

 1. The decision to retain the null hypothesis could be correct.

 2. The decision to retain the null hypothesis could be incorrect.

 3. The decision to reject the null hypothesis could be correct.

 4. The decision to reject the null hypothesis could be incorrect.

Decision

Retain the null Reject the null

Truth in the 
population 

True
CORRECT

1 – a
TYPE I ERROR

a

False
TYPE II ERROR

b
CORRECT

1 – b
POWER

TABLE 8.3 Four outcomes for making a decision. The decision can be either correct (correctly reject 
or retain null) or wrong (incorrectly reject or retain null).
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Type II error, or beta (b) error, is the probability of retaining a null hypothesis 
that is actually false.

DECISION: REJECT THE NULL HYPOTHESIS

When we decide to reject the null hypothesis, we can be correct or incorrect. The 
incorrect decision is to reject a true null hypothesis. This decision is an example of a 
Type I error. With each test we make, there is always some probability that our 
decision is a Type I error. A researcher who makes this error decides to reject previ­
ous notions of truth that are in fact true. Making this type of error is analogous to 
finding an innocent person guilty. To minimize this error, we assume a defendant is 
innocent when beginning a trial. Similarly, to minimize making a Type I error, we 
assume the null hypothesis is true when beginning a hypothesis test.

Type I error is the probability of rejecting a null hypothesis that is actually true. 
Researchers directly control for the probability of committing this type of error.

An alpha (a) level is the level of significance or criterion for a hypothesis test. 
It is the largest probability of committing a Type I error that we will allow and 
still decide to reject the null hypothesis.

Since we assume the null hypothesis is true, we control for Type I error by stating a 
level of significance. The level we set, called the alpha level (symbolized as a), is the larg­
est probability of committing a Type I error that we will allow and still decide to reject the 
null hypothesis. This criterion is usually set at .05 (a = .05), and we compare the alpha 
level to the p value. When the probability of a Type I error is less than 5% (p < .05), 
we decide to reject the null hypothesis; otherwise, we retain the null hypothesis.

The correct decision is to reject a false null hypothesis. There is always some 
probability that we decide that the null hypothesis is false when it is indeed false. This 
decision is called the power of the decision­making process. It is called power because 
it is the decision we aim for. Remember that we are only testing the null hypothesis 
because we think it is wrong. Deciding to reject a false null hypothesis, then, is the 
power, inasmuch as we learn the most about populations when we accurately reject 
false notions of truth. This decision is the most published result in behavioral research.

The power in hypothesis testing is the probability of rejecting a false null 
hypothesis. Specifically, it is the probability that a randomly selected sample will 
show that the null hypothesis is false when the null hypothesis is indeed false.

1. What type of error do we directly control?

2. What type of error is associated with decisions to retain the null?

3. What type of error is associated with decisions to reject the null?

4. State the two correct decisions that a researcher can make.

NOTE: A Type II error, or beta 

(b) error, is the probability of 

incorrectly retaining the null 

hypothesis.

NOTE: Researchers directly 

control for the probability of 

a Type I error by stating an 

alpha (a) level.

NOTE: The power in hypothesis 

testing is the probability of 

correctly rejecting the value 

stated in the null hypothesis.

DEFINITION

DEFINITION

LEARNING  
CHECK 4

Answers: 1. Type I error; 2. Type II error; 3. Type I error; 4. Retain a true null hypothesis and reject a false null 

hypothesis.

DEFINITION
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8.5  TESTING A RESEARCH HYPOTHESIS: 
EXAMPLES USING THE Z TEST

The test statistic in Step 3 converts the sampling distribution we observe into a 
standard normal distribution, thereby allowing us to make a decision in Step 4. The 
test statistic we use depends largely on what we know about the population. When 
we know the mean and standard deviation in a single population, we can use the 
one–independent sample z test, which we will use in this section to illustrate 
the four steps of hypothesis testing.

The one–independent sample z test is a statistical procedure used to test 
hypotheses concerning the mean in a single population with a known variance.

Recall that we can state one of three alternative hypotheses: A population mean 
is greater than (>), less than (<), or not equal (≠) to the value stated in a null hypoth­
esis. The alternative hypothesis determines which tail of a sampling distribution to 
place the level of significance, as illustrated in Figure 8.2. In this section, we will use 
an example for each type of alternative hypothesis.

NONDIRECTIONAL, TWO-TAILED 
HYPOTHESIS TESTS (H1: ≠)

In Example 8.1, we will use the z test for a nondirectional, or two-tailed test, 
where the alternative hypothesis is stated as not equal to (≠) the null hypothesis. For 
this test, we will place the level of significance in both tails of the sampling distribu­
tion. We are therefore interested in any alternative from the null hypothesis. This is 
the most common alternative hypothesis tested in behavioral science.

Nondirectional tests, or two-tailed tests, are hypothesis tests where the 
alternative hypothesis is stated as not equal to (≠). The researcher is interested 
in any alternative from the null hypothesis.

Templer and Tomeo (2002) reported that the population mean score on the 
quantitative portion of the Graduate Record Examination (GRE) General Test for 
students taking the exam between 1994 and 1997 was 558 ± 139 (m ± s). Suppose we 
select a sample of 100 participants (n = 100). We record a sample mean equal to 585 
(M = 585). Compute the one–independent sample z test for whether or not we will 
retain the null hypothesis (m = 558) at a .05 level of significance (a = .05).

Step 1: State the hypotheses. The population mean is 558, and we are testing 
whether the null hypothesis is (=) or is not (≠) correct:

H0: m = 558 Mean test scores are equal to 558 in the population.

H1: m ≠ 558 Mean test scores are not equal to 558 in the population.

Step 2: Set the criteria for a decision. The level of significance is .05, which makes the 
alpha level a = .05. To locate the probability of obtaining a sample mean from a given 

NOTE: The z test is used to 

test hypotheses about a 

population mean when the 

population variance is known.

NOTE: Nondirectional 

tests are used to test 

hypotheses when we are 

interested in any alternative 

from the null hypothesis.

EXAMPLE 8.1

DEFINITION

DEFINITION
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population, we use the standard normal distribution. We will locate the z scores in a 
standard normal distribution that are the cutoffs, or critical values, for sample mean 
values with less than a 5% probability of occurrence if the value stated in the null 
(m = 558) is true.

A critical value is a cutoff value that defines the boundaries beyond which 
less than 5% of sample means can be obtained if the null hypothesis is true. 
Sample means obtained beyond a critical value will result in a decision to 
reject the null hypothesis.

In a nondirectional two­tailed test, we divide the alpha value in half so that an 
equal proportion of area is placed in the upper and lower tail. Table 8.4 gives the 
critical values for one­ and two­tailed tests at a .05, .01, and .001 level of significance. 
Figure 8.4 displays a graph with the critical values for Example 8.1 shown. In this 
example a = .05, so we split this probability in half:

Splitting  in half: 25  in each tailα α
2

05
2

0 0= =.
.

Type of Test

Level of Significance (a) One-Tailed Two-Tailed

0.05 +1.645 or -1.645 ±1.96

0.01 +2.33 or -2.33 ±2.58

0.001 +3.09 or -3.09 ±3.30

TABLE 8.4 Critical values for one- and two-tailed tests at three commonly used levels of significance.

Critical values for a nondirectional 
(two-tailed) test with α = .05 

−1.96 1.96

Rejection region 
α = .0250 

Rejection region 
α = .0250 

0−1−2−3
Null

21 3 FIGURE 8.4

The critical values (±1.96) for a 
nondirectional (two-tailed) test 
with a .05 level of significance.

DEFINITION
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To locate the critical values, we use the unit normal table given in Table B1 in Appendix 
B and look up the proportion .0250 toward the tail in column C. This value, .0250, is 
listed for a z­score equal to z = 1.96. This is the critical value for the upper tail of the 
standard normal distribution. Since the normal distribution is symmetrical, the critical 
value in the bottom tail will be the same distance below the mean, or z = –1.96. The 
regions beyond the critical values, displayed in Figure 8.4, are called the rejection 
regions. If the value of the test statistic falls in these regions, then the decision is to 
reject the null hypothesis; otherwise, we retain the null hypothesis.

The rejection region is the region beyond a critical value in a hypothesis test. 
When the value of a test statistic is in the rejection region, we decide to reject 
the null hypothesis; otherwise, we retain the null hypothesis.

Step 3: Compute the test statistic. Step 2 sets the stage for making a decision because the 
criterion is set. The probability is less than 5% that we will obtain a sample mean that is at 
least 1.96 standard deviations above or below the value of the population mean stated in 
the null hypothesis. In this step, we will compute a test statistic to determine whether the 
sample mean we selected is beyond or within the critical values we stated in Step 2.

The test statistic for a one–independent sample z test is called the z statistic. The 
z statistic converts any sampling distribution into a standard normal distribution. 
The z statistic is therefore a z transformation. The solution of the formula gives the 
number of standard deviations, or z­scores, that a sample mean falls above or below 
the population mean stated in the null hypothesis. We can then compare the value 
of the z statistic, called the obtained value, to the critical values we determined in 
Step 2. The z statistic formula is the sample mean minus the population mean 
stated in the null hypothesis, divided by the standard error of the mean:

z statistic: z
M

nobt
M

M= − =µ
σ

σ σ
, . where

The z statistic is an inferential statistic used to determine the number of 
standard deviations in a standard normal distribution that a sample mean 
deviates from the population mean stated in the null hypothesis.

The obtained value is the value of a test statistic. This value is compared to 
the critical value(s) of a hypothesis test to make a decision. When the obtained 
value exceeds a critical value, we decide to reject the null hypothesis; 
otherwise, we retain the null hypothesis.

To calculate the z statistic, first compute the standard error (sM), which is the 
denominator for the z statistic:

σ σ
M n

= = = . .
139
100

 13 9

Then compute the z statistic by substituting the values of the sample mean, 
M = 585; the population mean stated by the null hypothesis, m = 558; and the 
standard error we just calculated, sM = 13.9:

z
M

obt
M

= − = − =µ
σ

585 558
13 9

1 94
.

. .

NOTE: For two-tailed tests, 

the alpha is split in half 

and placed in each tail of a 

standard normal distribution.

NOTE: A critical value 

marks the cutoff for the 

rejection region.

NOTE: The z statistic 

measures the number of 

standard deviations, or 

z-scores, that a sample mean 

falls above or below the 

population mean stated in the 

null hypothesis.

DEFINITION

DEFINITION
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The probability of obtaining Zobt = 1.94 is stated by the p value. To locate the p value 
or probability of obtaining the z statistic, we refer to the unit normal table in 
Table B1 in Appendix B. Look for a z score equal to 1.94 in column A, then locate 
the probability toward the tail in column C. The value is .0262. Finally, multiply the 
value given in column C times the number of tails for alpha. Since this is a two­
tailed test, we multiply .0262 times 2: p = (.0262) × 2 tails = .0524. Table 8.5 
summarizes how to determine the p value for one­ and two­tailed tests. (We will 
compute one­tailed tests in Examples 8.2 and 8.3.)

Step 4: Make a decision. To make a decision, we compare the obtained value to the 
critical values. We reject the null hypothesis if the obtained value exceeds a critical 
value. Figure 8.5 shows that the obtained value (Zobt = 1.94) is less than the critical value; 
it does not fall in the rejection region. The decision is to retain the null hypothesis.

The obtained value is 1.94,
which fails to reach the cutoff
for the rejection region; retain
the null hypothesis.

Rejection region 
α = .0250 

Rejection region 
α = .0250 

0−1 1 2 3−2−3

−1.96 
1.94Null

Retain the null
hypothesis 

FIGURE 8.5

Since the obtained value fails to 
reach the rejection region (it is 
within the critical values of ±1.96), 
we decide to retain the null 
hypothesis.

One-Tailed Test Two-Tailed Test

Number of tails 1 2

Probability p p

p value calculation 1p 2p

TABLE 8.5 To find the p value for the z statistic, find its probability (toward the tail) in the unit normal 
table and multiply this probability times the number of tails for alpha.

We found in Example 8.1 that if the null hypothesis were true, then p = .0524 
that we could have selected this sample mean from this population. The criteria we 
set in Step 2 was that the probability must be less than 5% that we obtain a sample 
mean, if the null hypothesis were true. Since p is greater than 5%, we decide to 
retain the null hypothesis. We conclude that the mean score on the GRE General 
Test in this population is 558 (the value stated in the null hypothesis).
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DIRECTIONAL, UPPER-TAIL CRITICAL 
HYPOTHESIS TESTS (H1: >)

In Example 8.2, we will use the z test for a directional, or one-tailed test, where 
the alternative hypothesis is stated as greater than (>) the null hypothesis. A direc­
tional test can also be stated as less than (<) the null hypothesis (an example for this 
alternative is given in Example 8.3). For an upper­tail critical test, or a greater than 
statement, we place the level of significance in the upper tail of the sampling distribu­
tion. So we are interested in any alternative greater than the value stated in the null 
hypothesis. This test is appropriate when it is not possible or highly unlikely that a 
sample mean will fall below the population mean stated in the null hypothesis.

Directional tests, or one-tailed tests, are hypothesis tests where the 
alternative hypothesis is stated as greater than (>) or less than (<) a value 
stated in the null hypothesis. Hence, the researcher is interested in a specific 
alternative from the null hypothesis.

Using the same study from Example 8.1, Templer and Tomeo (2002) reported that the 
population mean on the quantitative portion of the GRE General Test for students 
taking the exam between 1994 and 1997 was 558 ± 139 (m ± s). Suppose we select a 
sample of 100 students enrolled in an elite private school (n = 100). We hypothesize 
that students at this elite school will score higher than the general population. We 
record a sample mean equal to 585 (M = 585), same as measured in Example 8.1. 
Compute the one–independent sample z test at a .05 level of significance.

Step 1: State the hypotheses. The population mean is 558, and we are testing 
whether the alternative is greater than (>) this value:

H0: m = 558   Mean test scores are equal to 558 in the population of students 
at the elite school.

H1: m > 558   Mean test scores are greater than 558 in the population of 
students at the elite school.

Step 2: Set the criteria for a decision. The level of significance is .05, which makes 
the alpha level a = .05. To determine the critical value for an upper­tail critical test, 
we locate the probability .0500 toward the tail in column C in the unit normal 
table. The z­score associated with this probability is between z = 1.64 and z = 1.65. 
The average of these z­scores is z = 1.645. This is the critical value or cutoff for the 
rejection region. Figure 8.6 shows that for this test, we place all the value of alpha in 
the upper tail of the standard normal distribution.

Step 3: Compute the test statistic. Step 2 sets the stage for making a decision because 
the criterion is set. The probability is less than 5% that we will obtain a sample 
mean that is at least 1.645 standard deviations above the value of the population 
mean stated in the null hypothesis. In this step, we will compute a test statistic to 
determine whether or not the sample mean we selected is beyond the critical value 
we stated in Step 2.

NOTE: An upper-tail critical 

test is conducted when it is 

not possible or highly unlikely 

that a sample mean will fall 

below the population mean 

stated in the null hypothesis.

EXAMPLE 8.2

NOTE: For one-tailed tests, the 

alpha level is placed in a single 

tail of a distribution. For 

upper-tail critical tests, the 

alpha level is placed above the 

mean in the upper tail.

DEFINITION



 CHAPTER 8: INTRODUCTION TO HYPOTHESIS TESTING 17

The test statistic does not change from that in Example 8.1. We are testing the same 
population, and we measured the same value of the sample mean. We changed only 
the location of the rejection region in Step 2. The z statistic is the same computation 
as that shown in Example 8.1:

z
M

obt
M

= − = − =µ
σ

585 558
13 9

1 94
.

. .

Step 4: Make a decision. To make a decision, we compare the obtained value to the 
critical value. We reject the null hypothesis if the obtained value exceeds the critical 
value. Figure 8.7 shows that the obtained value (Zobt = 1.94) is greater than the 
critical value; it falls in the rejection region. The decision is to reject the null 
hypothesis. The p value for this test is .0262 (p = .0262). We do not double the 
p value for one­tailed tests.

We found in Example 8.2 that if the null hypothesis were true, then p = .0262 
that we could have selected this sample mean from this population. The criteria we 
set in Step 2 was that the probability must be less than 5% that we obtain a sample 
mean, if the null hypothesis were true. Since p is less than 5%, we decide to reject 
the null hypothesis. We decide that the mean score on the GRE General Test in this 

z = 1.645

Critical value for an upper-
tail critical test with α = .05 

Rejection region 
α = .05 

0−1−2−3
Null

21 3

FIGURE 8.6

The critical value (1.645) for a 
directional (upper-tail critical) 
hypothesis test at a .05 level of 
significance. When the test 
statistic exceeds 1.645, we reject 
the null hypothesis; otherwise, we 
retain the null hypothesis.

The test statistic reaches 
the rejection region; reject 
the null hypothesis. 

Rejection region 
α = .05 

0−1 1 2 3−2−3

1.94Null

Retain the null
hypothesis 

FIGURE 8.7

Since the obtained value reaches 
the rejection region, we decide to 
reject the null hypothesis.
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population is not 558, which was the value stated in the null hypothesis. Also, 
notice that we made two different decisions using the same data in Examples 8.1 
and 8.2. This outcome is explained further in Section 8.6.

DIRECTIONAL, LOWER-TAIL CRITICAL 
HYPOTHESIS TESTS (H1: <)

In Example 8.3, we will use the z test for a directional, or one­tailed test, where the 
alternative hypothesis is stated as less than (<) the null hypothesis. For a lower­tail 
critical test, or a less than statement, we place the level of significance or critical 
value in the lower tail of the sampling distribution. So we are interested in any alter­
native less than the value stated in the null hypothesis. This test is appropriate 
when it is not possible or highly unlikely that a sample mean will fall above the 
population mean stated in the null hypothesis.

Using the same study from Example 8.1, Templer and Tomeo (2002) reported that 
the population mean on the quantitative portion of the GRE General Test for those 
taking the exam between 1994 and 1997 was 558 ± 139 (m ± s). Suppose we select a 
sample of 100 students enrolled in a school with low funding and resources (n = 100). 
We hypothesize that students at this school will score lower than the general 
population. We record a sample mean equal to 585 (M = 585), same as measured in 
Examples 8.1 and 8.2. Compute the one–independent sample z test at a .05 level of 
significance.

Step 1: State the hypotheses. The population mean is 558, and we are testing 
whether the alternative is less than (<) this value:

H0: m = 558   Mean test scores are equal to 558 in the population at this 
school.

H1: m < 558   Mean test scores are less than 558 in the population at this 
school.

Step 2: Set the criteria for a decision. The level of significance is .05, which makes 
the alpha level a = .05. To determine the critical value for a lower­tail critical test, we 
locate the probability .0500 toward the tail in column C in the unit normal table. 
The z­score associated with this probability is again z = 1.645. Since this test is a 
lower­tail critical test, we place the critical value the same distance below the mean: 
The critical value for this test is z = –1.645. All of the alpha level is placed in the 
lower tail of the distribution beyond the critical value. Figure 8.8 shows the standard 
normal distribution, with the rejection region beyond the critical value.

Step 3: Compute the test statistic. Step 2 sets the stage for making a decision because 
the criterion is set. The probability is less than 5% that we will obtain a sample 
mean that is at least 1.645 standard deviations below the value of the population 
mean stated in the null hypothesis. In this step, we will compute a test statistic to 
determine whether or not the sample mean we selected is beyond the critical value 
we stated in Step 2.

The test statistic does not change from that used in Example 8.1. We are testing the 
same population, and we measured the same value of the sample mean. We changed 

NOTE: A lower-tail critical test 

is conducted when it is not 

possible or highly unlikely that 

a sample mean will fall above 

the population mean stated in 

the null hypothesis.

EXAMPLE 8.3

NOTE: For one-tailed tests, the 

alpha level is placed in a single 

tail of the distribution. For 

lower-tail critical tests, the 

alpha is placed below the 

mean in the lower tail.
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only the location of the rejection region in Step 2. The z statistic is the same 
computation as that shown in Example 8.1:

z
M

obt
M

= − = − =µ
σ

585 558
13 9

1 94
.

. .

Step 4: Make a decision. To make a decision, we compare the obtained value to the 
critical value. We reject the null hypothesis if the obtained value exceeds the critical 
value. Figure 8.9 shows that the obtained value (Zobt =  +1.94) does not exceed the 
critical value. Instead, the value we obtained is located in the opposite tail. The 
decision is to retain the null hypothesis.

z = −1.645

Critical value for an lower-
tail critical test with α = .05 

Rejection region 
α = .05 

0 1 2 3
Null

−2 −1−3

FIGURE 8.8

The critical value (-1.645) for a 
directional (lower-tail critical) test 
at a .05 level of significance. 
When the test statistic is less than 
-1.645, we reject the null 
hypothesis; otherwise, we retain 
the null hypothesis.

The test statistic does not reach the
rejection region; retain the null
hypothesis.
This is actually a Type III error—this
result would have been significant if
the rejection region were placed in
the upper tail.

Null
0−1 1−2 2−3 3

1.94

Rejection region 
α = .05 Retain the null

hypothesis

FIGURE 8.9

Since the obtained value does not 
reach the rejection region, we 
decide to retain the null 
hypothesis.
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The decision in Example 8.3 was to retain the null hypothesis, although if we 
placed the rejection region in the upper tail (as we did in Example 8.2), we would 
have decided to reject the null hypothesis. We anticipated that scores would be 
worse, and instead, they were better than the value stated in the null hypothesis. 
When we fail to reject the null hypothesis because we placed the rejection region in 
the wrong tail, we commit a Type III error (Kaiser, 1960).

A Type III error occurs with one-tailed tests, where the researcher decides to retain 
the null hypothesis because the rejection region was located in the wrong tail.

The “wrong tail” refers to the opposite tail from where a difference was 
observed and would have otherwise been significant.

8.6  RESEARCH IN FOCUS: DIRECTIONAL 
VERSUS NONDIRECTIONAL TESTS

Kruger and Savitsky (2006) conducted a study in which they performed two tests on the 
same data. They completed an upper­tail critical test at a = .05 and a two­tailed test at 
a = .10. A shown in Figure 8.10, these are similar tests, except in the upper­tail test, all 
the alpha level is placed in the upper tail, and in the two­tailed test, the alpha level is 
split so that .05 is placed in each tail. When the researchers showed these results to a 
group of participants, they found that participants were more persuaded by a significant 
result when it was described as a one­tailed test, p < .05, than when it was described as a 
two­tailed test, p < .10. This was interesting because the two results were identical—
both tests were associated with the same critical value in the upper tail.

Most editors of peer­reviewed journals in behavioral research will not publish 
the results of a study where the level of significance is greater than .05. Although 
the two­tailed test, p < .10, was significant, it is unlikely that the results would be 
published in a peer­reviewed scientific journal. Reporting the same results as a one­
tailed test, p < .05, makes it more likely that the data will be published.

NOTE: A Type III error occurs 

when the rejection region is 

located in the wrong tail. This 

type of error is only possible for 

one-tailed tests.

DEFINITION

z = 1.645 z = −1.645

Upper-tail critical test at a
.05 level of significance

Two-tailed test at a .10
level of significance 

The upper critical
value is the same

for both tests 

0−1−2−3
Null

21 3
z = 1.645

0−1−2−3
Null

21 3

FIGURE 8.10

When a = .05, all of that 
value is placed in the 
upper tail for an upper-tail 
critical test. The two-
tailed equivalent would 
require a test with 
a = .10, such that .05 is 
placed in each tail.
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The two­tailed test is more conservative; it makes it more difficult to reject the 
null hypothesis. It also eliminates the possibility of committing a Type III error. 
The one­tailed test, though, is associated with greater power. If the value stated in 
the null hypothesis is false, then a one­tailed test will make it easier to detect this 
(i.e., lead to a decision to reject the null hypothesis). Because the one­tailed test 
makes it easier to reject the null hypothesis, it is important that we justify that an 
outcome can occur in only one direction. Justifying that an outcome can occur in 
only one direction is difficult for much of the data that behavioral researchers mea­
sure. For this reason, most studies in behavioral research are two­tailed tests.

1. Is the following set of hypotheses appropriate for a directional or a nondirec­
tional hypothesis test?

 H0: m = 35
 H1: m ≠ 35

2. A researcher conducts a one–independent sample z test. The z statistic for the 
upper-tail critical test at a .05 level of significance was Zobt = 1.84. What is the 
decision for this test?

3. A researcher conducts a hypothesis test and finds that the probability of select­
ing the sample mean is p = .0689 if the value stated in the null hypothesis is 
true. What is the decision for a hypothesis test at a .05 level of significance?

4. Which type of test, one­tailed or two­tailed, is associated with greater power to 
detect an effect when the null hypothesis is false?

 MEASURING THE SIZE OF AN EFFECT: COHEN’S d 8.7

A decision to reject the null hypothesis means that an effect is significant. For a 
one­sample test, an effect is the difference between a sample mean and the 
population mean stated in the null hypothesis. In Example 8.2, we found a 
significant effect, meaning that the sample mean, M = 585, was significantly larger 
than the value stated in the null hypothesis, m = 558. Hypothesis testing identifies 
whether an effect exists in a population. When a sample mean is likely to occur if 
the null hypothesis were true (p > .05), we decide that an effect doesn’t exist in a 
population; the effect is insignificant. When a sample mean is unlikely to occur if 
the null hypothesis were true (p < .05), we decide that an effect does exist in a 
population; the effect is significant. Hypothesis testing does not, however, inform 
us of how big the effect is.

To determine the size of an effect, we compute effect size. There are two ways 
to calculate the size of an effect. We can determine:

 1. How far scores shifted in the population

 2. The percent of variance that can be explained by a given variable

NOTE: Two-tailed tests are 

more conservative and 

eliminate the possibility of 

committing a Type III error. 

One-tailed tests are associated 

with more power, assuming the 

value stated in the null 

hypothesis is wrong.

LEARNING  
CHECK 5

Answers: 1. A nondirectional (two­tailed) hypothesis test; 2. Reject the null; 3. Retain the null; 4. One­tailed tests.
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Cohen’s d is a measure of effect size in terms of the number of standard 
deviations that mean scores shifted above or below the population mean 
stated by the null hypothesis. The larger the value of d, the larger the effect 
in the population.

Cohen’s effect size conventions are standard rules for identifying small, 
medium, and large effects based on typical findings in behavioral research.

In Example 8.4, we will compute effect size for the research study in Examples 8.1 
to 8.3. Since we tested the same population and measured the same sample mean 
in each example, the effect size estimate will be the same for all examples.

For a single sample, an effect is the difference between a sample mean and 
the population mean stated in the null hypothesis. In hypothesis testing, an 
effect is insignificant when we retain the null hypothesis; an effect is 
significant when we reject the null hypothesis.

Effect size is a statistical measure of the size of an effect in a population, 
which allows researchers to describe how far scores shifted in the population, 
or the percent of variance that can be explained by a given variable.

Effect size is most meaningfully reported with significant effects when the 
decision was to reject the null hypothesis. If an effect is not significant, as in 
instances when we retain the null hypothesis, then we are concluding that an effect 
does not exist in a population. It makes little sense to compute the size of an effect 
that we just concluded doesn’t exist. In this section, we describe how far scores 
shifted in the population using a measure of effect size called Cohen’s d.

Cohen’s d measures the number of standard deviations an effect shifted above 
or below the population mean stated by the null hypothesis. The formula for 
Cohen’s d replaces the standard error in the denominator of the test statistic with 
the population standard deviation (Cohen, 1988):

Cohen’s d
M= − µ

σ
.

The value of Cohen’s d is zero when there is no difference between two means 
and increases as the differences get larger. To interpret values of d, we refer to Cohen’s 
effect size conventions outlined in Table 8.6. The sign of d indicates the direction 
of the shift. When values of d are positive, an effect shifted above the population 
mean; when values of d are negative, an effect shifted below the population mean.

NOTE: Cohen’s d is a measure 

of the number of standard 

deviations an effect is shifted 

above or below the population 

mean stated by the null 

hypothesis.

DEFINITION

Description of Effect Effect Size (d)

Small d < 0.2

Medium 0.2 < d < 0.8

Large d < 0.8

TABLE 8.6  Cohen’s effect size conventions.NOTE: Hypothesis testing 

determines whether an effect 

exists in a population. Effect 

size measures the size of 

an observed effect from 

small to large.

DEFINITION



 CHAPTER 8: INTRODUCTION TO HYPOTHESIS TESTING 23

In Examples 8.1 to 8.3, we used data given by Templer and Tomeo (2002). They 
reported that the population mean on the quantitative portion of the GRE General 
Test for those taking the exam between 1994 and 1997 was 558 ± 139 (m ± s). In 
each example, the mean test score in the sample was 585 (M = 585). What is the 
effect size for this test using Cohen’s d?

The numerator for Cohen’s d is the difference between the sample mean (M = 585) 
and the population mean (m = 558). The denominator is the population standard 
deviation (s =  139):

d
M= − = =µ

σ
27

139
0 19. .

We conclude that the observed effect shifted 0.19 standard deviations above 
the mean in the population. This way of interpreting effect size is illustrated in 
Figure 8.11. We are stating that students in the elite school scored 0.19 standard 
deviations higher, on average, than students in the general population. This 
interpretation is most meaningfully reported with Example 8.2 since we decided to 
reject the null hypothesis using this example. Table 8.7 compares the basic 
characteristics of hypothesis testing and effect size.

EXAMPLE 8.4

Population distribution 
assuming the null is false—
with a 2-point effect 

d = 0.19

Population distribution
assuming the null is true

µ = 558
σ = 139

µ = 585
σ = 139

141 280 419 558 697 836 975

168 307 446 585 724 863 1002

FIGURE 8.11

Effect size. Cohen’s d estimates 
the size of an effect using the 
population standard deviation as 
an absolute comparison. 
A 27-point effect shifted the 
distribution of scores in the 
population by 0.19 standard 
deviations.
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8.8 EFFECT SIZE, POWER, AND SAMPLE SIZE

One advantage of knowing effect size, d, is that its value can be used to determine 
the power of detecting an effect in hypothesis testing. The likelihood of detecting 
an effect, called power, is critical in behavioral research because it lets the researcher 
know the probability that a randomly selected sample will lead to a decision to 
reject the null hypothesis, if the null hypothesis is false. In this section, we describe 
how effect size and sample size are related to power.

THE RELATIONSHIP BETWEEN EFFECT SIZE AND POWER

As effect size increases, power increases. To illustrate, we will use a random sample 
of quiz scores in two statistics classes shown in Table 8.8. Notice that only the 

1. ________ measures the size of an effect in a population, whereas ______________ 
measures whether an effect exists in a population.

2. The scores for a population are normally distributed with a mean equal to 25 
and standard deviation equal to 6. A researcher selects a sample of 36 students 
and measures a sample mean equal to 23 (M = 23). For this example:

a. What is the value of Cohen’s d?

b. Is this effect size small, medium, or large?

Hypothesis 
(Significance) Testing

 
Effect Size (Cohen’s d)

Value being measured? p value d

What type of distribution is the 
test based upon?

Sampling distribution Population distribution 

What does the test measure? The probability of obtaining a 
measured sample mean

The size of a measured treatment 
effect in the population

What can be inferred from the 
test?

Whether the null hypothesis is 
true or false

Whether the size of a treatment 
effect is small to large

Can this test stand alone in 
research reports?

Yes, the test statistic can be 
reported without an effect size

No, effect size is almost always 
reported with a test statistic

TABLE 8.7 Distinguishing characteristics for significance testing and effect size.

LEARNING  
CHECK 6

Answers: 1. Effect size, hypothesis or significance testing; 2. (a) d=− 2325
6

 = -0.33, (b) Medium effect size.
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If the null hypothesis is true, then the sampling distribution of the mean for 
alpha (a), the type of error associated with a true null hypothesis, will have a mean 
equal to 38. We can now determine the smallest  value of the sample mean that is 
the cutoff for the rejection region, where we decide to reject that the true population 
mean is 38. For an upper­tail critical test using a .05 level of significance, the critical 

standard deviation differs between these populations. Using the values given in 
Table 8.8, we already have enough information to compute effect size:

Class 1 Class 2

M1 = 40 M2 = 40

m1 = 38 m2 = 38

s1 = 10 s2 = 2

TABLE 8.8 Characteristics for two hypothetical 
populations of quiz scores.

Sampling distribution for Class 1: Mean: mM = 38

Standard error: σ
n

= 10
30

 = 1.82

Sampling distribution for Class 2: Mean: mM = 38

Standard error: σ
n

= 2
30

 = 0.37

Effect size for Class 1  2: . .d
M= − = − =µ

σ
40 38

10
0 0

Effect size for Class 2  0: . .d
M= − = − =µ

σ
40 38

10
1 0

The numerator for each effect size estimate is the same. The mean difference 
between the sample mean and the population mean is 2 points. Although there is a 
2­point effect in both Class 1 and Class 2, Class 2 is associated with a much larger 
effect size in the population because the standard deviation is smaller. Since a larger 
effect size is associated with greater power, we should find that it is easier to detect 
the 2­point effect in Class 2. To determine whether this is true, suppose we select a 
sample of 30 students (n = 30) from each class and measure the same sample mean 
value that is listed in Table 8.8. Let’s determine the power of each test when we 
conduct an upper­tail critical test at a .05 level of significance.

To determine the power, we will first construct the sampling distribution for each 

class, with a mean equal to the population mean and standard error equal to s
n

:
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Sample means in this region have 
less than a 5% chance of 
occurrence, if the null is true. 
Probability of a Type I error = .05 

About 29% of sample means 
selected from this population will 
result in a decision to reject the 
null, if the null is false. 
Power = .2946

Sampling distribution 
assuming the null is false—
with a 2-point effect 

Sampling distribution
assuming the null is true

µ = 38
SEM = 1.82 
n = 30

µ = 40
SEM = 1.82
n = 30

32.54 34.36 36.18 38 39.82 41.64 43.46

40
40.99

41.82 43.64 45.4634.54 36.36 38.18

FIGURE 8.12

Small effect size and low power 
for Class 1. In this example, when 
alpha is .05, the critical value or 
cutoff for alpha is 40.99. When 
a = .05, notice that only about 
29% of samples will detect this 
effect (the power). So even if the 
researcher is correct, and the null 
is false (with a 2-point effect), only 
about 29% of the samples he or 
she selects at random will result 
in a decision to reject the null 
hypothesis.

value is 1.645. We can use this value to compute a z transformation to determine 
what sample mean value is 1.645 standard deviations above 38 in a sampling 
distribution for samples of size 30:

Cutoff for a (Class 1): 1 645
38

1 82
.

.
= −M

M = 40.99

Cutoff for a (Class 2): 1 645
38

0 37
.

.
= −M

M = 38.61

If we obtain a sample mean equal to 40.99 or higher in Class 1, then we will 
reject the null hypothesis. If we obtain a sample mean equal to 38.61 or higher in 
Class 2, then we will reject the null hypothesis. To determine the power for this test, 
we assume that the sample mean we selected (M = 40) is the true population mean—
we are therefore assuming that the null hypothesis is false. We are asking the 
following question: If we are correct and there is a 2­point effect, then what is the 
probability that we will detect the effect? In other words, what is the probability 
that a sample randomly selected from this population will lead to a decision to 
reject the null hypothesis?

If the null hypothesis is false, then the sampling distribution of the mean for b, 
the type of error associated with a false null hypothesis, will have a mean equal to 
40. This is what we believe is the true population mean, and this is the only change; 
we do not change the standard error. Figure 8.12 shows the sampling distribution 
for Class 1, and Figure 8.13 shows the sampling distribution for Class 2, assuming 
the null hypothesis is correct (top graph) and assuming the 2­point effect exists 
(bottom graph).

NOTE: As the size of an effect 

increases, the power to detect 

the effect also increases.
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If we are correct, and the 2-point effect exists, then we are much more likely to 
detect the effect in Class 2 for n = 30. Class 1 has a small effect size (d = .20). Even if 
we are correct, and a 2-point effect does exist in this population, then of all the 
samples of size 30 we could select from this population, only about 29% (power = 
.2946) of those samples will show the effect (i.e., lead to a decision to reject the 
null). The probability of correctly rejecting the null hypothesis (power) is low.

Class 2 has a large effect size (d = 1.00). If we are correct, and a 2-point effect 
does exist in this population, then of all the samples of size 30 we could select from 
this population, nearly 100% (power = .9999) of those samples will show the effect 
(i.e., lead to a decision to reject the null hypothesis). Hence, we have more power to 
detect an effect in this population, and correctly reject the null hypothesis.

THE RELATIONSHIP BETWEEN SAMPLE SIZE AND POWER

To overcome low effect size, we can increase the sample size. Increasing sample size 
decreases standard error, thereby increasing power. To illustrate, let’s compute the 
test statistic for the one-tailed significance test for Class 1, which had a small effect 
size. The data for Class 1 are given in Table 8.8 for a sample of 30 participants. The 
test statistic for Class 1 when n = 30 is:

z
M

n

obt = − = − =µ
σ

40 38
10
30

1 10. .

For a one-tailed test that is upper-tail critical, the critical value is 1.645. The 
value of the test statistic (+1.10) does not exceed the critical value (+1.645), so we 
retain the null hypothesis.

Increase the sample size to n = 100. The test statistic for Class 1 when n = 100 is:

z
M

n

obt = − = − =µ
σ

40 38
10
100

2 00. .

NOTE: Increasing the sample 

size increases power by 

reducing the standard error, 

thereby increasing the value of 

the test statistic in hypothesis 

testing.

Sample means in this region have 
less than a 5% chance of 
occurrence, if the null is true. 
Probability of a Type I error = .05 

Almost 100% of sample means 
collected from this population 
will result in a decision to reject 
the null, if the null is false. 
Power = .9999

Sampling distribution 
assuming the null is false—
with a 2-point effect 

Sampling distribution
assuming the null is true

µ = 38
SEM = 0.37
n = 30

µ = 40
SEM = 0.37
n = 30

36.89 37.26 37.63 38 38.37 38.74 39.11

40 40.37 40.74 41.1138.89
38.61

39.26 39.63

FIGURE 8.13

Large effect size and high 
power for Class 2. In this 
example, when alpha is .05, 
the critical value or cutoff 
for alpha is 38.61. When 
a = .05, notice that 
practically any sample will 
detect this effect (the 
power). So if the researcher 
is correct, and the null is 
false (with a 2-point effect), 
nearly 100% of the samples 
he or she selects at random 
will result in a decision to 
reject the null hypothesis.
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The critical value is still 1.645. The value of the test statistic (+2.00) now exceeds 
the critical value (+1.645), so we reject the null hypothesis. 

Notice that increasing the sample size alone led to a decision to reject the 
null hypothesis. Hence, increasing sample size increases power: It makes it 
more likely that we will detect an effect, assuming that an effect exists in some 
population.

1. As effect size increases, what happens to the power?

2. As effect size decreases, what happens to the power?

3. When a population is associated with a small effect size, what can a researcher 
do to increase the power of the study?

4. True or false: The effect size, power, and sample size associated with a study can 
affect the decisions we make in hypothesis testing.

8.9 ADDITIONAL FACTORS THAT INCREASE POWER

The power is the likelihood of detecting an effect. Behavioral research often requires a 
great deal of time and money to select, observe, measure, and analyze data. And the 
institutions that supply the funding for research studies want to know that they are 
spending their money wisely and that researchers conduct studies that will show 
results. Consequently, to receive a research grant, researchers are often required to 
state the likelihood that they will detect the effect they are studying, assuming they 
are correct. In other words, researchers must disclose the power of their study.

The typical standard for power is .80. Researchers try to make sure that at 
least 80% of the samples they select will show an effect when an effect exists in 
a population. In Section 8.8, we showed that increasing effect size and sample 
size increases power. In this section, we introduce four additional factors that 
influence power.

INCREASING POWER: INCREASE 
EFFECT SIZE, SAMPLE SIZE, AND ALPHA

Increasing effect size, sample size, and the alpha level will increase power. 
Section 8.8 showed that increasing effect size and sample size increases power; 
here we discuss increasing alpha. The alpha level is the probability of a Type I 
error; it is the rejection region for a hypothesis test. The larger the rejection 
region, the greater the likelihood of rejecting the null hypothesis, and the greater 
the power will be. This was illustrated by the difference in the decisions made for 
Examples 8.1 and 8.2. Increasing the size of the rejection region in the upper tail 
in Example 8.2 increased the power to detect the 27­point effect. This is why 
one­tailed tests are more powerful than two­tailed tests: They increase alpha in 

NOTE: To increase power: 

increase effect size, sample 

size, and alpha; decrease beta, 

population standard deviation, 

and standard error.

Answers: 1. Power increases; 2. Power decreases; 3. Increase the sample size (n); 4. True.

LEARNING  
CHECK 7
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the direction that an effect is expected to occur, thereby increasing the power to 
detect an effect.

INCREASING POWER: DECREASE BETA, 
STANDARD DEVIATION (s), AND STANDARD ERROR

Decreasing three factors can increase power. Decreasing beta error (b) increases power. 
In Table 8.3, b is given as the probability of a Type II error, and 1 - b is given as the 
power. So the lower b is, the greater the solution will be for 1 - b. For example, say 
b = .20. In this case, 1 - b = (1 - .20) = .80. If we decreased b, say, to b = .10, the power 
will increase: 1 - b = (1 - .10) = .90. Hence, decreasing beta error increases power.

Decreasing the population standard deviation (s) and standard error (sM) will 
also increase power. The population standard deviation is the numerator for com­
puting standard error. Decreasing the population standard deviation will decrease 
the standard error, thereby increasing the value of the test statistic. To illustrate, 
suppose that we select a sample from a population of students with quiz scores 
equal to 10 ± 8 (m ± s). We select a sample of 16 students from this population and 
measure a sample mean equal to 12. In this example, the standard error is:

σ σ
M n

= = =8
16

2 0. .

To compute the z statistic, we subtract the sample mean from the population 
mean and divide by the standard error:

z
M

obt
M

= − = − =µ
σ

12 10
2

1 00. .

An obtained value equal to 1.00 does not exceed the critical value for a one­
tailed test (critical value = 1.645) or a two­tailed test (critical values = ±1.96). The 
decision is to retain the null hypothesis.

If the population standard deviation is smaller, the standard error will be 
smaller, thereby making the value of the test statistic larger. Suppose, for example, 
that we reduce the population standard deviation to 4. The standard error in this 
example is now:

σ σ
M n

= = =4
16

1 0. .  

To compute the z statistic, we subtract the sample mean from the population 
mean and divide by this smaller standard error:

z
M

obt
M

= − = − =µ
σ

12 10
1

2 00. .

An obtained value equal to 2.00 does exceed the critical value for a one­tailed 
test (critical value = 1.645) and a two­tailed test (critical values = ±1.96). Now the 
decision is to reject the null hypothesis. Assuming that an effect exists in the 
population, decreasing the population standard deviation decreases standard error 
and increases the power to detect an effect. Table 8.9 lists each factor that increases 
power.
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8.10 SPSS IN FOCUS: A PREVIEW FOR CHAPTERS 9 TO 18

As discussed in Section 8.5, it is rare that we know the value of the population 
variance, so the z test is not a common hypothesis test. It is so uncommon that 
SPSS can’t be used to compute this test statistic, although it can be used to 
compute all other test statistics described in this book. For each analysis, SPSS 
provides output analyses that indicate the significance of a hypothesis test and 
provide the information needed to compute effect size and even power. SPSS 
statistical software can be used to compute nearly any statistic or measure used in 
behavioral research. For this reason, most researchers use SPSS software to analyze 
their data.

8.11  APA IN FOCUS: REPORTING THE 
TEST STATISTIC AND EFFECT SIZE

To report the results of a z test, we report the test statistic, p value, and effect size of 
a hypothesis test. Here is how we could report the significant result for the z statistic 
in Example 8.2:

Test scores for students in the elite school were significantly higher than 
the standard performance of test takers, z = 1.94, p < .03.

Notice that when we report a result, we do not state that we reject or retain the 
null hypothesis. Instead, we report whether a result is significant (the decision was 
to reject the null hypothesis) or not significant (the decision was to retain the null 
hypothesis). Also, you are not required to report the exact p value, although it is 
recommended. An alternative is to report it in terms of the closest value to the 
hundredths or thousandths place that its value is less than. In this example, we 
stated p < .03 for a p value actually equal to .0262. 

Finally, it is often necessary to include a figure or table to illustrate a significant 
effect and the effect size associated with it. For example, we could describe the effect 
size in one additional sentence supported by the following figure:

As shown in Figure 8.14, students in the elite school scored an average of 27 
points higher on the exam compared to the general population (d = .19).

To increase power:

Increase Decrease

d (Effect size) b (Type II error)

n (Sample size) s (Standard deviation)

a (Type I error) sM (Standard error)

TABLE 8.9 A summary of factors that increase power—the probability of 
rejecting a false null hypothesis.
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In two sentences and a figure, we reported the value of the test statistic, 
p value, effect size, and the mean test scores. The error bars indicate the standard 
error of the mean for this study.
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FIGURE 8.14

The mean Graduate Record 
Examination (GRE) General Test 
scores among a sample of gifted 
students compared with the 
general population. Error bars 
indicate SEM.
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CHAPTER SUMMARY ORGANIZED BY LEARNING OBJECTIVE

LO 1: Identify the four steps of hypothesis testing.

 • Hypothesis testing, or significance test-
ing, a method of testing a claim or hypothesis 
about a parameter in a population, using data 
measured in a sample. In this method, we test 
some hypothesis by determining the likeli­
hood that a sample statistic could have been 
selected, if the hypothesis regarding the popu­
lation parameter were true. The four steps of 
hypothesis testing are as follows:
– Step 1: State the hypotheses.
– Step 2: Set the criteria for a decision.
– Step 3: Compute the test statistic.
– Step 4: Make a decision.

LO 2: Define null hypothesis, alternative hypothesis, 
level of significance, test statistic, p value, and statisti­
cal significance.

 • The null hypothesis (H0), stated as the 
null, is a statement about a population 
parameter, such as the population mean, that 
is assumed to be true.

 • An alternative hypothesis (H1) is a 
statement that directly contradicts a null 
hypothesis by stating that the actual value of a 
population parameter, such as the mean, is 
less than, greater than, or not equal to the 
value stated in the null hypothesis.

 • Level of significance refers to a criterion of 
judgment upon which a decision is made 
regarding the value stated in a null hypothesis.

 • The test statistic is a mathematical formula 
that allows researchers to determine the likeli­
hood or probability of obtaining sample out­
comes if the null hypothesis were true. The 
value of a test statistic can be used to make 
inferences concerning the value of population 
parameters stated in the null hypothesis.

 • A p value is the probability of obtaining a sam­
ple outcome, given that the value stated in the 
null hypothesis is true. The p value of a sample 
outcome is compared to the level of significance.

 • Significance, or statistical significance, 
describes a decision made concerning a value 
stated in the null hypothesis. When a null 
hypothesis is rejected, a result is significant. 

When a null hypothesis is retained, a result is 
not significant.

LO 3: Define Type I error and Type II error, and iden­
tify the type of error that researchers control.

 • We can decide to retain or reject the null 
hypothesis, and this decision can be correct or 
incorrect. Two types of errors in hypothesis 
testing are called Type I and Type II errors.

 • A Type I error is the probability of rejecting 
a null hypothesis that is actually true. The 
probability of this type of error is determined 
by the researcher and stated as the level of sig­
nificance or alpha level for a hypothesis test.

 • A Type II error is the probability of retaining 
a null hypothesis that is actually false.

LO 4: Calculate the one–independent sample z test 
and interpret the results.

 • The one–independent sample z test is a 
statistical procedure used to test hypotheses 
concerning the mean in a single population 
with a known variance. The test statistic for 
this hypothesis test is

z
M

nobt
M

M= − =µ
σ

σ σ
, .where 

 • Critical values, which mark the cutoffs for 
the rejection region, can be identified for 
any level of significance. The value of the test 
statistic is compared to the critical values. 
When the value of a test statistic exceeds a 
critical value, we reject the null hypothesis; 
otherwise, we retain the null hypothesis.

LO 5: Distinguish between a one­tailed and two­
tailed test, and explain why a Type III error is possible 
only with one­tailed tests.

 • Nondirectional (two-tailed) tests are 
hypothesis tests where the alternative hypothe­
sis is stated as not equal to (≠). So we are interested 
in any alternative from the null hypothesis.

 • Directional (one-tailed) tests are hypoth­
esis tests where the alternative hypothesis is 
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stated as greater than (>) or less than (<) some 
value. So we are interested in a specific alterna­
tive from the null hypothesis.

 • A Type III error occurs for one­tailed tests 
where a result would have been significant in 
one tail, but the researcher retains the null 
hypothesis because the rejection region was 
placed in the wrong or opposite tail.

LO 6: Explain what effect size measures and compute 
a Cohen’s d for the one–independent sample z test.

 • Effect size is a statistical measure of the size of 
an observed effect in a population, which allows 
researchers to describe how far scores shifted in 
the population, or the percent of variance that 
can be explained by a given variable. 

 • Cohen’s d is used to measure how far scores 
shifted in a population and is computed using 
the following formula:

Cohen s ’ .d
M= − µ

σ

 • To interpret the size of an effect, we refer to 
Cohen’s effect size conventions, which 
are standard rules for identifying small, 

medium, and large effects based on typical 
findings in behavioral research.

LO 7: Define power and identify six factors that influ­
ence power.

 • The power in hypothesis testing is the prob­
ability that a randomly selected sample will 
show that the null hypothesis is false when 
the null hypothesis is in fact false.

 • To increase the power of detecting an effect in 
a given population:
a. Increase effect size (d), sample size (n), and 

alpha (a).
b. Decrease beta error (b), population standard 

deviation (s), and standard error (sM).

APA LO 8: Summarize the results of a one–indepen­
dent sample z test in American Psychological 
Association (APA) format.

 • To report the results of a z test, we report the 
test statistic, p value, and effect size of a 
hypothesis test. In addition, a figure or table is 
usually provided to summarize the means and 
standard error or standard deviation measured 
in a study.

KEY TERMS

alpha (a)
alternative hypothesis (H1)
beta (b) error 
Cohen’s d
Cohen’s effect size conventions
critical values
directional (one­tailed) tests
effect
effect size
hypothesis

hypothesis testing
level of significance
nondirectional (two­tailed) tests
null
null hypothesis (H0)
obtained value
one–independent sample z test
power
p value
rejection region

significance
significance testing
statistical significance
test statistic
Type I error
Type II error
Type III error
z statistic

END-OF-CHAPTER PROBLEMS

Factual Problems

 1. State the four steps of hypothesis testing.

 2. What are two decisions that a researcher makes 
in hypothesis testing?

 3. What is a Type I error (a)?

 4. What is a Type II error (b)?

 5. What is the power in hypothesis testing?

 6. What are the critical values for a one–independent 
sample nondirectional (two­tailed) z test at a .05 
level of significance?
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 7. Explain why a one­tailed test is associated with 
greater power than a two­tailed test.

 8. How are the rejection region, probability of a 
Type I error, level of significance, and alpha level 
related?

 9. Alpha (a) is used to measure the error for deci­
sions concerning true null hypotheses. What is 
beta (b) error used to measure?

10. What three factors can be increased to increase 
power?

11. What three factors can be decreased to increase 
power?

12. Distinguish between the significance of a result 
and the size of an effect.

Concepts and Application Problems

13. Explain why the following statement is true: The 
population standard deviation is always larger 
than the standard error when the sample size is 
greater than one (n > 1).

14. A researcher conducts a hypothesis test and con­
cludes that his hypothesis is correct. Explain why 
this conclusion is never an appropriate decision 
in hypothesis testing.

15. The weight (in pounds) for a population of 
school­aged children is normally distributed 
with a mean equal to 135 ± 20 pounds (m ± s). 
Suppose we select a sample of 100 children (n = 
100) to test whether children in this population 
are gaining weight at a .05 level of significance.

a. What are the null and alternative hypotheses?

b. What is the critical value for this test?

c. What is the mean of the sampling distribution?

d. What is the standard error of the mean for the 
sampling distribution?

16. A researcher selects a sample of 30 participants 
and makes the decision to retain the null hypoth­
esis. She conducts the same study testing the 
same hypothesis with a sample of 300 partici­
pants and makes the decision to reject the null 
hypothesis. Give a likely explanation for why the 
two samples led to different decisions.

17. A researcher conducts a one–independent sample 
z test and makes the decision to reject the null 
hypothesis. Another researcher selects a larger 
sample from the same population, obtains the 
same sample mean, and makes the decision to 
retain the null hypothesis using the same 
hypothesis test. Is this possible? Explain.

18. Determine the level of significance for a hypothe­
sis test in each of the following populations given 
the specified standard error and critical values. 
Hint: Refer to the values given in Table 8.4:

a. m = 100, sM = 8, critical values: 84.32 and 115.68

b. m = 100, sM = 6, critical value: 113.98

c. m = 100, sM = 4, critical value: 86.8

19. For each p value stated below: (1) What is the 
decision for each if a = .05? (2) What is the deci­
sion for each if a = .01?

a. p = .1000

b. p = .0250

c. p = .0050

d. p = .0001

20. For each obtained value stated below: (1) What is 
the decision for each if a = .05 (one­tailed test, 
upper­tail critical)? (2) What is the decision for 
each if a = .01 (two­tailed test)?

a. zobt = 2.10

b. zobt = 1.70

c. zobt = 2.75

d. zobt = –3.30

21. Will each of the following increase, decrease, or 
have no effect on the value of a test statistic for 
the one–independent sample z test?

a. The sample size is increased.

b. The population variance is decreased.

c. The sample variance is doubled.

d. The difference between the sample mean and 
population mean is decreased.

22. The police chief selects a sample of 49 local police 
officers from a population of officers with a mean 
physical fitness rating of 72 ± 7.0 (m ± s) on a 
100­point physical endurance rating scale. He 
measures a sample mean physical fitness rating on 
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this scale equal to 74. He conducts a one–independent 
sample z test to determine whether physical 
endurance increased at a .05 level of significance.

a. State the value of the test statistic and whether 
to retain or reject the null hypothesis.

b. Compute effect size using Cohen’s d.

23. A cheerleading squad received a mean rating (out 
of 100 possible points) of 75 ± 12 (m ± s) in com­
petitions over the previous three seasons. The 
same cheerleading squad performed in 36 local 
competitions this season with a mean rating 
equal to 78 in competitions. Suppose we conduct 
a one–independent sample z test to determine 
whether mean ratings increased this season 
(compared to the previous three seasons) at a .05 
level of significance.

a. State the value of the test statistic and whether 
to retain or reject the null hypothesis.

b. Compute effect size using Cohen’s d.

24. A local school reports that its average GPA is 
2.66 ± 0.40 (m ± s). The school announces that it 
will be introducing a new program designed to 
improve GPA scores at the school. What is the 
effect size (d) for this program if it is expected to 
improve GPA by:

a. .05 points?

b. .10 points?

c. .40 points?

25. Will each of the following increase, decrease, or 
have no effect on the value of Cohen’s d?

a. The sample size is decreased.

b. The population variance is increased.

c. The sample variance is reduced.

d. The difference between the sample and popu­
lation mean is increased.

26. State whether the effect size for a 1­point effect 
(M – m = 1) is small, medium, or large given the 
following population variances:

a. s = 1

b. s = 2

c. s = 4

d. s = 6

27. As a increases, so does the power to detect an 
effect. Why, then, do we restrict a from being 
larger than .05?

28. Will increasing sample size (n) and decreasing the 
population standard deviation (s) increase or 
decrease the value of standard error? Will this 
increase or decrease power?

Problems in Research

29. Directional vs. nondirectional hypothesis 
testing. In an article reviewing directional and 
nondirectional tests, Leventhal (1999) stated the 
following hypotheses concerning the difference 
between two population means.

 

A B

m1 – m2 = 0 m1 – m2 = 0

m1 – m2 > 0 m1 – m2 ≠ 0

a. Which did he identify as nondirectional?

b. Which did he identify as directional?

30. The one-tailed tests. In their book, Common 
Errors in Statistics (and How to Avoid Them), Good 
and Hardin (2003) wrote, “No one will know 
whether your [one­tailed] hypothesis was con­
ceived before you started or only after you’d 
examined the data” (p. 347). Why do the 
authors state this as a concern for one­tailed 
tests?

31. The hopes of a researcher. Hayne Reese 
(1999) wrote, “The standard method of statistical 
inference involves testing a null hypothesis that 
the researcher usually hopes to reject” (p. 39). 
Why does the researcher usually hope to reject 
the null hypothesis?

32. Describing the z test. In an article describing 
hypothesis testing with small sample sizes, 
Collins and Morris (2008) provided the following 
description for a z test: “Z is considered signifi­
cant if the difference is more than roughly two 
standard deviations above or below zero (or more 
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precisely, |Z| > 1.96)” (p. 464). Based on this 
description:

a. Are the authors referring to critical values for a 
one­ or two­tailed z test?

b. What alpha level are the authors referring to?

33. Sample size and power. Collins and Morris 
(2008) simulated selecting thousands of samples 
and analyzed the results using many different 
test statistics. With regard to the power for these 
samples, they reported that “generally speaking, 

all tests became more powerful as sample size 
increased” (p. 468). How did increasing the sam­
ple size in this study increase power?

34. Describing hypothesis testing. Blouin and 
Riopelle (2004) made the following statement 
concerning how scientists select test statistics: 
“[This] test is the norm for conducting a test of H0, 
when . . . the population(s) are normal with 
known variance(s)” (p. 78). Based on this descrip­
tion, what test statistic are they describing as the 
norm? How do you know this?



 37

CHAPTER 8 

APPENDIX C

Chapter Solutions  
for Even-Numbered  
End-of-Chapter Problems

 2. Reject the null hypothesis and retain the null 
hypothesis.

 4. A Type II error is the probability of retaining a 
null hypothesis that is actually false.

 6. Critical values = ±1.96.

 8. All four terms describe the same thing. The 
level of significance is represented by alpha, 
which defines the rejection region or the region 
associated with the probability of committing a 
Type I error.

10. Alpha level, sample size, and effect size.

12. In hypothesis testing, the significance of an effect 
determines whether an effect exists in some pop­
ulation. Effect size is used as a measure for how 
big the effect is in the population.

14. All decisions are made about the null hypothesis 
and not the alternative hypothesis. The only 
appropriate decisions are to retain or reject the 
null hypothesis.

16. The sample size in the second sample was larger. 
Therefore, the second sample had more power to 
detect the effect, which is likely why the deci­
sions were different.

18.
a. a = .05.
b. a = .01.
c. a = .001.

20.
1a. Reject the null hypothesis.
1b. Reject the null hypothesis.
1c.  Reject the null hypothesis.
1d. Retain the null hypothesis.
2a. Retain the null hypothesis.
2b. Retain the null hypothesis.
2c.  Reject the null hypothesis.
2d. Reject the null hypothesis.

22.

a. σM = 7
49

 = 1.0; hence,
 
zobt = −74 72

1  
= 2.00. 

 The decision is to reject the null hypothesis.

b. d = −74 72
7  

= .29. A medium effect size.

24.

a. d = 0 05
0 4
.
.

 = 0.125. A small effect size.

b. d = 0 1
0 4

.

.
 = 0.25. A medium effect size.

c. d = 0 4
0 4

.

.
 = 1.00. A large effect size.
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26.

a. d = 1
1

 = 1.00. Large effect size.

b. d = 1
2  

= 0.50. Medium effect size.

c. d = 1
4

 = 0.25. Medium effect size.

d. d = 1
6

 = .17. Small effect size.

28. This will decrease standard error, thereby increas­
ing power.

30. The point Good and Hardin (2003) are making is 
that it is possible with the same data to retain the 
null for a two­tailed test and reject the null for a 
one­tailed test where the entire rejection region is 
placed in a single tail.

32.

a. Two­tailed z test.

b. a = .05.

34. We would use the z test because the population 
variance is known.


