3. Planning Mathematics Lessons

The Four-Column Lesson Planning Model

A Quality Control Framework for Planning Lessons

Eliciting and Addressing Students’ Preconceptions

Building Conceptual and Procedural Knowledge

Supporting Metacognition

Alternatives to the Four-Column Lesson Plan Model

Ideas for Differentiating Instruction: Open Questions and Parallel Tasks

A “Top-10” List of Teaching Strategies And Tools

Reading Strategies

Writing Strategies

Manipulatives Usage

Calculator Usage

Cooperative Learning

Encouraging Student-Invented Strategies

Having Students Pose Problems

Lecture and Note Taking

Metaphor

Games
4. Mathematics Curriculum Models and Techniques

Recent Influential Curriculum Documents

- Political Context
- NCTM Curriculum Focal Points
 - Grade 6 Focal Points
 - Grade 7 Focal Points
 - Grade 8 Focal Points
- NCTM’s Focus in High School Mathematics
 - Number and Measurement
 - Algebraic Symbols
 - Functions
 - Geometry
 - Statistics and Probability
- Curricular Techniques in Mathematics
 - Use of Real-World Contexts
 - Teaching Through Problem Solving
 - Thematic Units
 - Integration of Content Strands
 - Guided Investigation
 - Progressive Formalization
- Technology Connection: Computer-Assisted Individualized Instruction
 - Drill and Practice
 - Teaching for Social Justice
 - Summary
- Choosing Curriculum Materials
 - Criteria for Examining Curricular Content
 - Examining Effects on Student Learning

Conclusion
Implementing CMP 108
Implementing NSF-Funded Curricula: Insights From Practice 110
Implementing MiC 110
Implementing Math Thematics 110
The Road to Implementing Reform-Oriented Curricula 111
Learning From Curriculum Materials 111
Reconceptualizing the Teacher’s Role 111
Long-Term Planning and Backward Design 112
Teaching in a School Context Lacking a Reform-Oriented Curriculum 112
Level of Cognitive Demand 113
Maintaining the Level of Cognitive Demand 114
Formative and Summative Assessment Strategies 115
Posing Higher-Order Classroom Questions and Discussion Prompts 115
Technology Connection: Classroom Response Systems 117
Monitoring and Steering Classroom Discourse 118
Observing Students at Work 118
Rubrics 118
Portfolios 120
Homework Assignments 120
Conclusion 121
Vocabulary List 122
Homework Tasks 122
Clinical Tasks 123
Vignette Analysis Activity: Focus on Attending to Precision (CCSS Standard for Mathematical Practice 6) 123
Resources to Explore 126

6. Becoming a Professional Mathematics Teacher 129
Forming Professional Relationships 130
Relationships With Students 130
Organization of Class Work and Establishing Routines 130
Idea for Differentiating Instruction: Keeping All Students Engaged 132
Managing Classroom Discussions 132
Technology Connection: Introducing a Class to a New Piece of Technology 133
Classroom Discipline 134
Motivating Students 136
Assessing Students’ Work 138
Response to Intervention (RTI) Programs 139
The Individualized Education Plan (IEP) 139
Moral Dimensions of Relationships With Students 140
Relationships With Parents 141
Relationships With Mentor Teachers and Other Teachers 141
Relationships With University Supervisors 142
Engaging in Ongoing Professional Development 143
Professional Development Through Universities 143
Professional Development Situated in Practice 144
Professional Development Through Conferences 144
PART II: DEVELOPING AND TEACHING
MATHEMATICAL THINKING 153

7. Developing Students' Thinking in Number and Operations 155

What Is Numerical Thinking? 155
Algorithmic Thinking 156

Advantages of Algorithms 156
Pedagogical Difficulties With Algorithms 156
Connecting Algorithms to Previous Knowledge 157

Idea for Differentiating Instruction: Encouraging
Student-Generated Algorithms 158
Alternative Algorithms 158
Order of Operations 159

Number Sense and Estimation 160

Number Sense 160
Computational Estimation 161
Measurement Estimation 162

Proportional Reasoning 163

Operations With Rational Number Representations 163
Suggestions for Teaching Operations With Fractions 164
Additional Aspects of Proportional Reasoning 167

Generalizing Arithmetic 167

Analyzing Number Sentences 168
Analyzing Numerical Sequences 169

Idea for Differentiating Instruction: Polygonal Numbers 169

Mathematical Integrity of Sequence Tasks 170

Number Systems and Number Theory 171

Factors and Multiples 171
The Fundamental Theorem of Arithmetic 171
Divisibility 172
Odd and Even Numbers 172
Prime Numbers 173
Irrational Numbers 173
Negative Numbers 175

Technology Connection: Operations on Integers

With Virtual Manipulatives 176
Complex Numbers 177

Understanding Vectors and Matrices 177
Vectors 178
Matrices 179

Combinatorial Thinking 181
9. Developing Students’ Statistical and Probabilistic Thinking 253
What Are Statistical and Probabilistic Thinking? 253
Statistical Thinking Elements 254
Statistical Literacy 254
Statistical Thinking 255
Statistical Reasoning 255
Elements of Probabilistic Thinking 257
Frequentist Probability 257
Classical Probability 258
Subjective Probability 259
Statistical Study Design 260
Formulating Questions 260
Drawing Samples 261
Understanding and Using Descriptive Statistical Tools 263
Data Displays 263
Technology Connection: Dynamic Statistics Software 267
Transnumeration 268
Technology Connection: Informal Representations
With Dynamic Statistics Software 269
Averages 270
Idea for Differentiating Instruction: Repeated Measures Task 273
Descriptive Statistics Beyond Averages 274
Procedural Knowledge Issues 274
Making Probabilistic Inferences 277
Misconceptions About Conditional Probability 277
Idea for Differentiated Instruction: Parallel Probability Tasks 278
Additional Common Reasoning Heuristics and Misconceptions 279
Understanding Random Variation 282
Conclusion 284
Vocabulary List 285
Homework Tasks 285
Clinical Tasks 290
Vignette Analysis Activity: Focus on Looking For and Making
Use of Structure (CCSS Standard for Mathematical Practice 7) 293
Resources to Explore 296
Four-Column Lesson Plans to Help Develop Students’
Statistical and Probabilistic Thinking 298

10. Developing Students’ Geometric Thinking 307
What Is Geometric Thinking? 308
Normative Geometric Thinking: Habits of Mind 308
Students’ Geometric Thinking: Van Hiele Levels 311
Understanding Fundamental Shapes and Their Definitions 314
Idea for Differentiating Instruction: Discussing Prototypes 315
Technology Connection: Dynamic Geometry Software,
Drawings, and Constructions 315
Technology Connection: Analyzing Premade Dynamic Constructions 317
Understanding and Constructing Geometric Proofs 318
The Intellectual Need for Deductive Proof 318