Contents

Preface xv

Chapter 1: The Study of Statistics in Criminal Justice 1

- Learning Objectives 1
- Introduction 1
- What Are Statistics? 2
 - Quantitative Raw Data or Compilations of Nonquantitative Raw Data as Statistics 3
- The Results of Mathematical Calculations as Statistics 4
- The Application of Probability Theory as Statistics 4
- Where Do Statistics Come From? 5
 - Categorizing and Counting 5
 - Measuring 5
 - Applying Probability Theory 6
- How Are Statistics Used in Criminal Justice? 6
 - Description 6
 - Estimation 7
 - Explanation 7
 - Prediction 8
- Major Sources of Statistical Data in Criminal Justice 8
- Why Study Statistics? 9
 - The Sometimes Contrasting Views of Researchers and Practitioners About Quantitative Research 9
 - Professionalization of Criminal Justice Careers 12
 - Statistics-Based Initiatives for Improving Criminal Justice Agency Policies and Practices 13
 - Tips for Succeeding in This Course 15
- Summary 17
- Concepts to Master 18
- Review Questions 18
- Exercises and Discussion Questions 19

Chapter 2: Scientific Research and Statistical Analysis 21

- Learning Objectives 21
- Introduction 22
- Units of Analysis and Variables 22
 - Mutually Exclusive and Exhaustive Variable Values 23
- Levels of Measurement 24
 - Nominal-Level Measurements 24
 - Ordinal-Level Measurements 24
 - Interval-Level Measurements 25
 - Ratio-Level Measurements 26
- Some Additional Considerations Regarding Levels of Measurement 26
Chapter 8: Bivariate Hypothesis Testing With Nominal and Ordinal Variables

Learning Objectives 227
Introduction 228
Some Basics of Hypothesis Testing 228
Type I and Type II Errors 230
Comparing Frequency Distributions 231
Both Variables at the Nominal Level 232
One Variable at the Nominal Level and One Variable at the Ordinal Level 234
Both Variables at the Ordinal Level 236
Fundamentals of Cross-Tabulation 236
Constructing a Contingency Table 236
Titling and Labeling the Contingency Table 239
Collapsing Categories 240
Using Percents in Contingency Tables 242
Reading the Diagonals in Contingency Tables 243
Elaboration Analysis 245
Replication 248
Explanation 249
Interpretation 249
Specification 250
No Apparent Relationship in the Zero-Order Table 251
Some Examples of Elaboration Analysis 251
Chi-Square Analysis 258
Assumptions 258
The Basic Ideas Underlying Chi-Square Analysis for Contingency Tables 259
Calculating Expected Cell Frequencies 261
Calculating Chi Square 264
Using the Chi-Square Table 265
Statistical Significance and Rejection Regions 266
Chi Square as a Univariate Goodness-of-Fit Test 268
How to Present Results 268
Assumptions and Cautions 270
Summary 272
Concepts to Master 273
Review Questions 273
Exercises and Discussion Questions 275
Chapter 9: Bivariate Hypothesis Testing for the Difference Between Two Means

Learning Objectives 279
Introduction 280
Independent and Dependent Random Samples 282
Independence and Dependence Within a Random Sample 282
Independence and Dependence Between Random Samples 282
A t Test for the Difference Between Two Independent Random Sample Means 285
Assumptions and Hypotheses 286
Directional and Nondirectional Hypotheses 287
Heteroscedasticity and Homoscedasticity 287
The Basic Ideas Underlying the Independent Random Samples Version of the t Test 289
The Theoretical Formulas for the Independent Random Samples Version of the t Test 291
The Sampling Distributions for the Difference Between Two Independent Random Sample Means 293
Calculating t for the Independent Random Samples Version of the t Test 298
Testing t for Statistical Significance 298
One- and Two-Tailed Tests of Significance 301
Some Reflections on Statistical Significance Tests 305
A t Test for the Difference Between Two Dependent Random Sample Means 306
Assumptions and Hypotheses 308
The Basic Ideas Underlying the Dependent Random Samples Version of the t Test 309
The Theoretical Formula for the Dependent Random Samples Version of the t Test 310
The Sampling Distribution for D 311
Calculating t for the Dependent Random Samples Version of the t Test 313
Calculating Degrees of Freedom 313
Interpreting the Results 314
Presenting Results for t Tests 314
The Relationship Between t and z 316
Confidence Limits and Intervals for the Difference Between Means 316
Assumptions and Cautions 318
Summary 320
Concepts to Master 321
Review Questions 321
Exercises and Discussion Questions 322

Chapter 10: Bivariate Hypothesis Testing With One-Way Analysis of Variance 325

Learning Objectives 325
Dealing With Missing Data 411
Assumptions of Linear Multiple Regression and Correlation Analyses 413
Linear Multiple Regression Analysis 413
The Basic Ideas Underlying Linear Multiple Regression Analysis 414
The General Linear Multiple Regression Equation 418
Standardized Betas 420
Stepwise Regression 421
Linear Multiple Correlation 422
The Basic Ideas Underlying Linear Multiple Correlation Analysis 422
Dummy Variables in Multiple Regression and Correlation Analyses 423
Models 425
Main Effects and Interaction Effects 427
The Problem of Multicollinearity 429
Tests of Statistical Significance for Linear Multiple Regression and Correlation Analyses 430
Reporting the Results of Multiple Regression and Correlation Analyses 430
Logarithm-Based Analyses 436
Logistic Regression 437
Reporting the Results of Logistic Regression 448
Assumptions and Cautions 454
Summary 455
Concepts to Master 456
Review Questions 456
Exercises and Discussion Questions 458

Chapter 13: Nonparametric Statistics 461
Learning Objectives 461
Introduction 462
Choosing Between Parametric and Nonparametric Inferential Statistics Revisited 462
General Assumptions of Nonparametric Inferential Statistics 464
The Mann-Whitney U Test for Two Independent Random Samples 465
Assumptions of the M-W U Test 465
The Basic Ideas Underlying the M-W U Test 465
Preparing Data for M-W U Analysis 466
Calculating M-W U 471
The Sampling Distribution for U 475
Testing U for Statistical Significance 476
Reporting the Results of M-W U Analysis 479
Concluding Remarks Regarding M-W U Analysis 479
The Kruskal-Wallis H Test for Three or More Independent Random Samples 479
Assumptions of the K-W H Test 488
The Basic Ideas Underlying the K-W H Test 488
Preparing Data for K-W H Analysis 489
Calculating K-W H 492
Testing K-W H for Statistical Significance 494