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1
INTRODUCTION

Learning Outcomes

By the end of this chapter you will:

1. Know how ‘network’ is defined in social network analysis.

2. Be familiar with three different approaches to social network 
analysis: ego-net analysis, whole network analysis and two-mode 
analysis.

3. Know what is distinctive about ego-net analysis.

4. Understand the pros and cons of ego-net analysis, relative to whole 
network analysis, and where it is most appropriate to use each 
approach.

5. Understand some of the ways in which network data are stored 
and represented for purposes of network analysis, and also certain 
fundamental concepts and measures used by network analysts.

6. Be familiar with the basic plan for the book as a whole.

Introduction
In this book we offer a comprehensive introduction to one of the most 
widely used forms of social network analysis (SNA): actor-centred or  
‘ego-net’ analysis. An ego-net is the network which forms around a particular 
social actor, be that a human actor or a corporate actor, such as an economic 
firm or national government. In theory it involves all other actors (alters) 
with whom an ego enjoys a specific type or types of tie (e.g. emotional 
closeness, information sharing, economic exchange, etc.) and all relations  
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SOCIAL NETWORK ANALYSIS FOR EGO-NETS2

(of the same type or types) between those alters. Useful and important work 
can be conducted without information on ties between alters, however, and 
this aspect of the definition of an ego-net is therefore sometimes relaxed: an 
ego-net is then simply a list of alters with whom a target individual (ego) 
enjoys a particular type of relation. 

Thus defined, ego-nets can be visualised, as in Figure 1.1, using coloured 
shapes (‘vertices’) to represent an ego and her alters (the nodes of the network) 
and connecting lines (‘edges’ or ‘arcs’) to represent ties between them. The 
‘ego’ is coloured black in Figure 1.1 to distinguish her from her (grey) alters. 

Alter 1

Alter 2 Alter 3

Alter 4

Alter 5

Ego

Figure 1.1 Visualising an ego-net

Ego-net analysis is one of several approaches to SNA. Like each of the 
others and like any other research method, it has strengths and weaknesses 
and is more appropriate in some circumstances than others. Our decision 
to focus the book exclusively upon ego-net analysis is not an expression 
of preference on our part or an argument in favour of it over other forms. 
We have all used a variety of forms of SNA in the course of our work. Our 
decision to focus upon ego-net analysis here is based upon the observa-
tion that it tends to receive less coverage than other approaches in general 
texts on SNA, when we, as teachers of the range of SNA methods, find that 
many newcomers to the approach either wish to use an ego-net approach 
or probably should use it, given the nature of their research problem, and 
when a large number of papers published on networks, including many 
influential papers, use this approach. In short, we have written this book 
because there is no other book-length introduction to ego-net analysis and 
there should be.

Ego-net analysis is best understood in the context of a wider appreciation 
of SNA and of the concept and importance of social networks more 
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generally. We therefore begin this chapter with a brief review of the field 
and of the two key alternatives to ego-net analysis within SNA: whole 
network analysis and two-mode analysis. This will allow us to draw out the 
distinctiveness of ego-net analysis and its strengths and weaknesses, relative 
to the other approaches. Furthermore, it will allow us to explain when and 
where ego-net analysis is more (and less) appropriate as an approach com-
pared to the other approaches. The chapter ends with a brief discussion of 
the plan for the rest of the book.

Networks and Network Analysis
Connection is a constitutive fact of social life. A social world comprises 
not only a plurality of social actors, both human and corporate (e.g. firms 
or governments), but also interaction and enduring ties between those 
actors. Actors influence one another and exchange resources, becoming 
interdependent. They cooperate, compete, conflict, support and seduce one 
another. And these interactions and ties make a difference. For example, 
where ties cluster, generating a dense nexus of mutual influence, we often 
find greater homogeneity in attitudes, preferences and practices (Coleman 
1988). To give another example, pathways of ties through networks pro-
vide channels for the diffusion of culture, resources, information and often 
viruses too. Finally, where specific patterns of ties give rise to trust and 
norms of cooperation (‘social capital’) this can facilitate forms of action, 
both individual and collective, that would not be possible in the absence of 
that particular configuration of ties – although this is usually at the cost of 
certain constraints (Coleman 1990). Networks are social structures which, 
as Durkheim (1964) said of social structures more generally, afford both 
opportunities and constraints for those entangled within them.

Some of the effects just mentioned can be generalised across a network. 
Everybody within the network is affected to a similar degree. Some apply 
to certain sub-groups within a network more than others, however, and 
some may apply specifically to particular actors, on account of the posi-
tion they occupy within the network. This might be a matter of who they 
know, to invoke everyday wisdom, or, more generally, of the types of people 
they know. However, it may be a matter of network structure; where they 
fit within a pattern of relations: for example, which parts of a network they 
uniquely bridge (Burt 1992, 2005) or the pattern of connection in their 
immediate network neighbourhood.

These observations raise important methodological questions. How do 
we capture and analyse relational phenomena? With a certain amount of 
tweaking, which we discuss in Chapter Three, many of the standard meth-
ods of data gathering within social science can be used to generate relational, 
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network data. Nodes and their ties must be systematically surveyed but we 
can do that with a questionnaire, a structured or semi-structured interview, 
through direct observation (participant or non-participant), by trawling 
archives and texts, and perhaps by other means too. Furthermore, in the 
‘information age’ and more especially the age of Web 2.0, a great deal of 
relational data is routinely generated in the course of everyday life, prompt-
ing some to ask if social scientists should not be taking more advantage of 
these sources too (Savage and Burrows 2007). Of course many social scien-
tists are now taking advantage of them.

What we do with relational data when we have them, how we store and ana-
lyse them, poses more problems for conventional social scientific approaches, 
however. Relational data differ from the data usually analysed in social science 
and require dedicated techniques for their storage, representation and analysis. 
This is where SNA comes in. SNA is the collective label for a set of intercon-
nected concepts, theories and techniques, developed for the most part within 
a relatively cohesive, interdisciplinary research ‘network’, devoted to the gath-
ering and analysis of relational data (for a comprehensive introduction see 
Borgatti et al. 2013, Scott 2000 or Wasserman and Faust 1994).

SNA has a long history, stretching back to the 1930s (see Freeman 2006, 
Scott 2000) and its development has involved seminal contributions from 
sociologists, anthropologists, social psychologists, business analysts and 
increasingly also political scientists and economists. The distinctiveness 
of the approach owes at least as much to a wider interdisciplinary reach, 
into a branch of mathematics known as graph theory, however, and to col-
laboration between social scientists, mathematicians and increasingly also 
statisticians. It is not an exclusively quantitative approach and in this book 
we will stress the gains to be made from adopting a mixed method, qualita-
tive and quantitative, approach to it (see also Bellotti 2014, Crossley 2010, 
Edwards 2010, Edwards and Crossley 2009). However, it is the interplay 
between social science and graph theory, in large part, which facilitates rela-
tional analysis and marks SNA out as a distinct research methodology.

What Are Networks?
All networks comprise two essential elements:

•• A set of nodes.

•• A set or sets of ties.

Optionally, they may also include:

•• A set of node attributes.
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Nodes
What counts as a node will vary between research projects and is at 
the discretion of the researcher. Anything might be defined as a node for 
purposes of SNA if it is meaningful to define it thus in the context of a par-
ticular study; that is, if a researcher has good reasons to want to regard it as a 
node, and if it is capable of the type of tie of interest to the researcher. Nodes 
might be: human individuals, chimpanzees, organisations, cities, nation-
states, etc. Network analysis is a formal analytic approach, focused upon 
patterns of connection. It can be applied to any type of connection between 
any type of object. However, most analytic routines and algorithms assume 
that all nodes are, in principle, equally capable of engaging in the type of 
connection under consideration and this is therefore a constraint upon node 
choice. Each of the nodes in a friendship network must be capable of forming 
a friendship with any and every other, for example, at least in principle. 

This doesn’t mean that every node will be a friend with every other. 
That wouldn’t be a very interesting network to analyse! Nor does it pre-
clude the possibility that certain conditions might make friendship between 
some nodes more likely than others. Indeed, one of the questions we might 
be interested in is whether certain properties, either of the network or the 
nodes (e.g. beliefs or identities), affect the likelihood of connection between 
them. Such patterns and properties are only of interest, however, where we 
believe that, in principle, any node could form a tie (e.g. a friendship) with 
any other. It may be interesting if we find that members of one ethnic group 
less often form business ties with members of another ethnic group, for 
example, or if one ethnic group is found to be marginal in the network of a 
particular business community but only because we believe that, in principle, 
any member of the node set could form a tie with any of the others. 

The relative absence of constraints upon node choice imposed by the 
theories and procedures of SNA does not mean that anything goes with 
regard to node selection. To reiterate our above point, nodes and node sets 
must be defined and selected carefully, with reference to the ideas and theo-
ries driving a particular research project. As in statistics, a network analysis 
is only as good as the data upon which it is based and it is the responsibil-
ity of the researcher to ensure that their data are meaningful and of a high 
quality. SNA packages will generate impressive visualisations and numerical 
arrays out of any old rubbish but it will still be rubbish. ‘Garbage in’ leads to 
‘garbage out’ (the GIGO principle) and we must be careful to ensure that 
the nodes/node set that we select for analysis will allow us to answer the 
scientific questions that we have set for ourselves.

The question of which nodes to focus upon for a social network analysis 
is often a matter of where to draw the boundaries around a node set. Some 
networks are already bounded for us. If we are interested in friendship 
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patterns between children in a school or shop-floor workers in a factory, for 
example, then the boundaries of the formal organisation itself suggest obvi-
ous boundaries for our node set, and there will usually be a register of some 
sort that we can use, listing all members of that set. Many of the networks 
that we want to analyse have no neat boundary, however. When Saunders 
(2007) elected to survey the network of environmental organisations in 
London, for example, she confronted a range of problems. In particular she 
had to decide which of the organisations known to her counted as environ-
mental organisations (there are plenty of obvious inclusions and exclusions 
but inevitably also a high number of more ambiguous cases) and she had 
to tackle the problem of accessing those which were not, at the start of the 
project, known to her. Many potential populations of interest have no clear 
and unequivocal criteria of inclusion and nothing approximating a mem-
bership list or register that we can draw upon to define them. To quote a 
well-known American statesman, they involve both known-unknowns and 
unknown-unknowns, and we have no option but to try to work around 
this. Such problems are not unique to SNA. They pose a problem for all 
types of social science research. But they are no less of a problem either.

Ties
As with nodes, the formalism of SNA means that any type of tie can be 
focused upon, as long as all potential pairs of nodes are capable of entering 
into them and they are meaningful and appropriate to both the research ques-
tions being asked and the theories and conjectures which are driving them. 
If we are interested in the spread of sexually transmitted diseases, for example, 
then we need to know who engages in risky sexual practices (i.e. practices 
which facilitate disease transmission) with whom. Any other relation between 
the members of our node set is irrelevant because it does not facilitate trans-
mission of a pathogen. Unless, that is, we want to track the diffusion of safe 
sex messages too, in which case we might also be interested in who talks to 
whom about intimate matters. If, by contrast, we want to predict the manner 
in which an economic crisis may cascade from one country to others then 
we need to know which countries, within the relevant set of countries, trade 
heavily with which of the others. And if we are interested in social capital and 
the potential for certain sorts of collective action within a community we may 
want to know the pattern and extent of relations of trust (or cooperation) 
between its various members. There is no type of tie which is correct for all 
research purposes. It always depends and is in many cases highly specific.

In some cases, of course, we may be interested in multiple types of 
relationship amongst the same population of nodes. Salient ties in many 
networks of interest are ‘multiplex’ (they have many strands, incorporating 
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multiple types of relation). Studying students in a college, for example, we 
might want to know who studies together, who socialises together between 
lectures, who socialises together in evenings and at weekends, and who lives 
together. We might expect some overlap between these relations and SNA 
affords various ways of exploring such overlaps, but each is a distinct type 
of relation and it is reasonable to expect that some pairs of nodes may be 
linked in one of these ways but not the others.

Similarly, ties may have different strengths and we may wish to record 
and take account of these in our analyses. This might be captured by using 
a Likert Scale on a questionnaire; for example, by asking respondents how 
much, on a scale of 1–5 (or whatever), they like each of the people whom 
they have nominated as friends, how well they know them or how often 
they see them, etc. Alternatively, it might be captured through observation. 
Ethnologists observing animal interaction in the wild, for example, will 
often count how often any two animals interact in a particular way, weight-
ing their ties accordingly. Such detail is not always necessary or even helpful. 
Often it will suffice to ascertain whether two nodes enjoy a tie or not. But 
weighting is an option.

Finally, ties can be directed or undirected. We say that a tie is directed 
when it is meaningful to ask whether or not it is reciprocal. Liking is 
directed, for example, because knowing that John likes Jane does not tell us 
whether Jane likes John. She might but she might not. Living with someone, 
by contrast, is necessarily reciprocal and therefore ‘undirected’. If we know 
that John lives with Jane then we know that Jane lives with John, or rather 
we know that they live together.

Node Attributes
Node attributes are not necessary to the definition of networks and play 
no role in many network analytic routines, even when they are known. 
However, they can be included and may be very important in some cases. 
We may wish to know whether nodes in a network disproportionately form 
ties with others who are similar to them in some respect, for example – 
an effect referred to as ‘homophily’. Alternatively, we may wish to know 
whether particular node attributes are correlated with certain network posi-
tions. Are men more central than women within a particular network, for 
example? Do particular ethnic groups disproportionately find themselves 
in a particular position? These are categorical node attributes but in other 
cases nodes might have ordinal or interval level properties. We might wish 
to determine whether income is correlated with popularity, for example, or 
whether individuals are disproportionately likely to form ties with others of 
the same or a similar age as themselves.
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Whole Networks
Beyond the choices we make about node and tie sets, SNA offers a range 
of possibilities about the way in which we capture and analyse networks. 
This book is focused upon one very specific way: ego-net analysis. Before 
we narrow down on ego-nets, however, it is important to introduce the 
two main alternatives within the SNA toolbox: whole network analysis and 
two-mode analysis.

When we analyse a whole network we identify a relevant population 
of nodes and, as far as possible, conduct a census survey of all members of 
that population, seeking to establish the existence or not of a relevant tie 
between each pair of nodes in that population. In a population of 20, for 
example, there are potentially 190 undirected ties or 380 directed ties (see 
Box 1.1 for an explanation of this) and whole net analysis requires that we 
know about the existence or not of each one of them. 

BOX 1.1

Calculating the Potential Number of Ties in a Network:
A Worked Example

•• In a population of 20 nodes, assuming it is not meaningful to refer to a 
node’s relationship with itself (it is meaningful in some cases but often 
not), each has a potential 19 ties (the figure is 20 if nodes can enjoy ties 
with themselves – ‘reflexive ties’).

•• So the maximum potential number of ties in the network is 20 x 19 = 380.

•• This calculation assumes that our network is directed, however. It treats 
node number 1’s tie to node number 2 as distinct from node number  
2’s tie to node number 1. Each of the 20 nodes potentially ‘sends’ a tie  
to each of the 19 others (20 x 19) and each potentially ‘receives’ a tie from 
each of the 19 others.

•• If our network is undirected this calculation is problematic because it 
counts each tie twice, giving us double the number of (undirected) ties in 
the network. We therefore halve our original answer: 380/2 = 190.

This information is stored within an adjacency matrix (see Figure 1.2). 
This is a matrix whose first column and top row each list all of the nodes in 
the network, in the same order, with ties between nodes being indicated in the 
cell where the row of one meets the column of the other. In Figure 1.2, for 
example, there is a number 1 in the cell where Paul’s row intersects with 
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Ed’s column. That indicates that they have a tie. The 0 at the intersection of 
Ed’s row and Jo’s column, conversely, suggests that they have no tie. This is a 
basic, binary network. If our ties were weighted the numbers populating the 
cells would reflect the weighting. If Paul had rated his relationship with Ed 
as ‘5’ on a Likert scale or we had observed that he telephoned Ed five times 
during the period covered by our survey then we would have put a ‘5’ in 
the cell where his row intersects with Ed’s column.

John Paul Ed Jo Mick Keith

John 1 1 0 1 1 0

Paul 1 1 1 1 0 1

Ed 0 1 1 0 0 1

Jo 1 1 0 1 0 0

Mick 1 0 0 0 1 1

Keith 0 1 1 0 1 1

Figure 1.2 An adjacency matrix

Note that the diagonal running from the top left to the bottom right of 
Figure 1.2 comprises the cells where each node’s row coincides with its col-
umn, potentially recording the node’s relation with itself. As noted above, it 
is often meaningless to ask if a node has a relation with itself. This is reflected 
in the main software packages, such as UCINET, whose default setting for 
many analytic routines is to ignore the diagonal. The ties from an actor to 
their self (‘reflexive ties’) may be relevant, however, and can and should be 
included in computations where this is so. If our network involves ties of 
‘esteem’, for example, then we may wish to measure and record each node’s 
self-esteem, as well as their valuation of others, particularly if we believe 
that the former influences the latter or is affected by the opinions of others.

Note also that each pair of nodes (‘dyad’) in the network is represented twice 
in the matrix, once on either side of the diagonal. There is a cell where John’s 
row meets Keith’s column and a cell where Keith’s row meets John’s column. 
In the matrix for an undirected network each of the two cells will contain the 
same information, thereby giving an element of redundancy. The same tie will be 
recorded twice. For a directed network, however, this doubling up allows us to 
capture the direction of ties and any asymmetry in a relation. The intersection of 
John’s row and Keith’s column records whether John ‘sends’ a tie to Keith, whilst 
the intersection of Keith’s row and John’s column records whether Keith sends a 
tie to John. If a tie only exists in one direction, we can capture this. 

A whole network can be visualised in a graph, in the manner shown in 
Figure 1.3. Nodes (also referred to as ‘vertices’ in this context) are represented 
by small grey squares. Ties are represented by lines which connect them 
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(also referred to as ‘edges’). If this was a directed network then the lines 
would have arrow-heads indicating direction (connecting lines in graphs of 
directed ties (‘digraphs’) are sometimes referred to as ‘arcs’) and if the ties 
were weighted their weighting might be represented either by giving edges 
differing thicknesses or by way of numerical labels at the side of each edge. 

Similarly, node attributes might be represented in a graph. Categorical 
attributes can be represented by giving vertices different colours and shapes, 
for example, and ordinal or interval level attributes can be represented by 
varying the size of vertices. If Figure 1.3 was a network of trade relations 
between countries, for example, then we might indicate the continent to 
which each country belongs by way of a colour code, their system of 
government (e.g. democratic or not) by reference to different shapes, and 
their GDP by way of size – the bigger the GDP, the bigger the node.

Graphs are a great way of representing network data and can be very use-
ful. They can be misleading, however, especially if we try to read them as we 
might read a scatterplot, imputing vertical and horizontal axes to them and 
assigning significance to a node’s location along these axes. Nodes are often 
assigned a location in the graph space, by the main software packages, using 
algorithms which locate them close to others which have a similar profile 
of ties to them. There are different algorithms, however, based upon dif-
ferent principles. All only ever approximate a layout which operationalises 
their chosen principle, often with many ‘errors’. Analysts routinely change 
layouts, manually, either for aesthetic reasons or in order to better illustrate 
an observation that they have made regarding the network.

This is permissible because SNA operates with a different conception 
of space to the Cartesian conception employed in scatterplots. Network 

Figure 1.3 A whole network
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space is defined exclusively by patterns of connection. A node’s position in 
a network refers to its pattern of ties and bears no relation to its location 
(high or low, left or right) on the graph plot. Similarly, we commonly refer 
to the centrality of nodes (see below), deeming some more central than 
others, but again the various definitions of centrality that we work with all 
refer to patterns of connection rather than location on a graph plot. The 
least central node in a network may well be positioned towards the middle 
of a graph plot. Finally, ‘distances’, in network analysis, are measured in ties 
(or ‘degrees’) rather than centimetres or scales represented along graph axes. 

BOX 1.2

Paths and Geodesic Distance

Beth

SamRozTrishSueKate

•• In the above network there are two paths connecting Kate and Sam. 

•• One path goes via Sue, Trish and Roz. It has a length of four degrees.

•• The other path goes via Beth. It has a length of two degrees.

•• The geodesic distance between Kate and Sam is the shortest path length 
between them; in this case, two degrees.

•• Note that although Kate appears closer to Roz than to Sam on the plot 
she is closer to Sam in network terms because her geodesic distance 
from Sam is only two degrees, whereas her geodesic distance from Roz 
is three degrees.

•• Note finally that Kate has two paths to Roz (one via Beth and Sam, the 
other via Sue and Trish). In this case they are both the same length: three 
degrees.
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If two nodes are directly tied then they are at a distance of one degree. If 
they are not directly tied but each have a tie to a common, third node and 
are, in this respect, indirectly tied, then they are at a distance of two degrees. 
If their indirect connection involves two intermediaries, and therefore three 
ties, then they are connected by three degrees, and so on (see Box 1.2). 
These chains of connection are referred to as paths. Any two nodes may 
be connected by multiple paths but it is usually the shortest of these paths 
that we are interested in. The distance of the shortest path between any two 
nodes, measured in degrees, is referred to as the geodesic distance between 
these nodes. Geodesic distance will not usually correspond to the physical 
distance between nodes as represented on a graph (see Box 1.2).

Whole networks have a large number of properties, which can be defined 
at various levels. It would be useful to briefly outline these levels and intro-
duce one or two properties at each level.

The Whole Network Level 

These are properties which exist at the level of the whole network. There 
are many of them. Simple examples include: order, which is the number of 
nodes in the network; and density, which is the number of ties in the network 
expressed as a proportion of the number of ties there could be, given the 
number of nodes. There are six nodes in the network in Box 1.2, for example, 
and six ties. To work out the density of this network we would calculate the 
number of ties that there could be, using the method explained in Box 1.1. 
Assuming that ties are undirected and that it makes no sense to ask if a node 
has a (‘reflexive’) tie to itself, that gives us (6x5)/2 = 15. We then express the 
six ties that we have found to exist as a proportion of the 15 that could exist: 
i.e. 6/15 = 0.4. Our network has a density of 0.4. Note that density always 
varies between 0 (no ties in the network) and 1 (every possible tie is present).

Another whole network property is number of components. A component is 
a subset of nodes, each of which has a path connecting it to each of the others. 
There are five components in Figure 1.3, for example: a big one to the left of the 
plot, a long stringy one to the right, two dumbbell shaped dyadic nodes and 
a triangular shaped triadic component. We discuss components further below. 

Endogenously Defined Sub-Groups 

A network’s node set can often be divided into various subsets on the basis 
of patterns of ties. Components are subsets, for example, each distinguished 
by the paths connecting their constituent members. And they may be 
important. We would expect diffusion, contagion and/or cascades to hap-
pen within components, for example, depending upon the type of tie we are 
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looking at, but not across components because distinct components are not 
connected to one another. Similarly, we would not expect all members of 
a network to become involved in collective action if that network involved 
distinct components because the lack of connection between components 
would prevent coordination between them. We would only expect concerted 
action within components. 

Another example of an endogenous sub-group is a clique. This is a subset of 
three or more nodes, each member of which is connected to every other. 
The density of a clique is always 1 because all possible ties are actualised. 
Cliques are important because their membership is highly cohesive, making 
the diffusion of information within them very quick and the potential for col-
lective action, where triggered by an external event, much greater. 

Components and cliques are defined by their cohesion. Members are 
more connected to one another than to others outside of the group. Not 
all sub-groups are defined by their cohesion, however. Sub-groups might be 
defined where their members occupy equivalent positions in a network, 
irrespective of their cohesion, and SNA offers a number of distinct defini-
tions of equivalence. The most straightforward is structural equivalence. Two 
nodes are structurally equivalent if they have ties to the same alters, irrespective 
of whether they are tied to one another. Nodes that have no ties within a 
network (‘isolates’) are a special case of this and nicely illustrate the distinc-
tion between structurally equivalent sub-groups and cohesive sub-groups. All 
isolates within a network are structurally equivalent to one another because 
they have exactly the same pattern of ties (i.e. no ties at all). They are clearly 
not a cohesive group, however, because they have no ties to one another. A 
whole branch of SNA, referred to as blockmodelling, is devoted to modelling 
networks on the basis of such equivalently positioned groups (‘blocks’). 

Finally, a very popular form of sub-group analysis focuses upon the often 
observed division within networks between ‘core’ nodes, which are all relatively 
well-connected to one another and apparently dominant, and more peripheral 
nodes with a greater density of ties to the core than to one another but only 
a low density of ties in both cases. Core–periphery analysis might assume a 
categorical form, in which case we seek to partition our nodes into two cat-
egories: core and periphery. Alternatively it may be continuous, in which case 
we calculate a ‘coreness’ score for each node. The core–periphery divide is 
important because the core is often the dominant sub-group within a network.

Exogenously Defined Sub-Groups 
Sub-groups may also be defined by factors external to the network, especially 
node attributes. All of the women in a network involving both men and 
women constitute an exogenously defined sub-group, for example, as do 
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different ethnic groups in a multi-ethnic network. Analysis of exogenously 
defined sub-groups typically centres upon the effect (or lack of effect) of 
node attributes on patterns of connection, or, alternatively, where attributes 
are potentially changeable (e.g. political identity or musical taste), it centres 
on the effect of connection upon attributes: e.g. processes of social influence, 
which persuade actors to change their behaviour or tastes.

Many networks, for example, are characterised by homophily; that is, 
nodes are disproportionately linked to other nodes with whom they share a 
salient social status (‘status homophily’) or an interest, taste or value (‘value 
homophily’) (Lazarsfeld and Merton 1964). This suggests either that people 
like to form ties with others similar to themselves or that they are influ-
enced by others to whom they are connected (or both). Having established 
the existence of homophily in a network, our analysis might turn to explor-
ing which is the more likely possibility. Alternatively, we might be interested 
to see whether particular node attributes (e.g. ethnicity) are associated with 
particular positions in the network: e.g. membership of the core or a given 
structurally equivalent block.

The Node Level 
In addition to their exogenously defined attributes, nodes have properties in 
virtue of their pattern of connection. In particular they can be more or less 
central to the network, as defined by one or more of the very different types 
of centrality identified in SNA. At a very basic level, for example, nodes vary 
in their number of ties within the network; that is, their ‘degree centrality’. 
Some inevitably have more ties than others; that is, a higher degree or degree 
centrality. They are more degree central. Degree is only one measure of cen-
trality, however. There are many others, including closeness, betweenness and 
eigenvector centrality. These other forms are explained in texts devoted to 
whole network analysis (e.g. Borgatti et al. 2013, Scott 2000 or Wasserman 
and Faust 1994).

Dyads and Triads 
Recent advances in the statistic modelling of networks have focused upon 
dyads and more especially triads as units of analysis. For example, early statis-
tical approaches focused upon issues of reciprocity. They hypothesised that, 
in certain types of directed networks, involving certain types of tie, a node 
was more likely to ‘send a tie’ to an alter if the alter sent a tie to them. This 
hypothesis was tested (and usually confirmed) by looking at the number of 
reciprocated ties in a network and comparing it against the number one 
would expect by chance, given a particular density of ties. 
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BOX 1.3

Some Key Concepts
Clique: A subset of nodes all of whose members are directly tied to the 
others, giving them a maximum density (i.e. 1).

Component: A subset of nodes, all of whose members are linked by a path.

Degree Centrality: There are many ways of comparing nodes’ levels of 
centrality within a network. The most straightforward – degree centrality – is 
to compare their respective numbers of ties.

Density: The number of ties in a network expressed as a proportion of the 
total number that are possible.

Path: A chain of connections and intermediaries linking two nodes in a 
network, such that information, viruses and other such things can pass 
between them.

Reciprocity: In a directed network any node A might ‘send’ a tie to a node B 
without necessarily receiving a tie back (A might like B (a tie of liking) whilst 
B does not like A or perhaps does not even know who they are). Reciprocity 
refers to a situation within a pair of nodes where each does send a tie to the 
other. It was of interest in early statistical approaches to network analysis as 
it was hypothesised that a tie from A to B is more likely when B sends a tie to 
A. Obviously certain types of tie are unlikely to be reciprocated. If B bullies A 
(a tie of bullying) it is unlikely that A will also bully B.

Status Homophily: A tendency within a network for nodes to be dispro-
portionately tied to others who share one or more salient statuses with them 
(e.g. gender, ethnicity or age).

Structural Equivalence: Any two or more nodes are perfectly structurally 
equivalent where they have exactly the same pattern of ties: i.e. they are tied 
to exactly the same alters in exactly the same way.

Transitivity: The idea of transitivity suggests that any two nodes are more 
likely to enjoy a tie if each is tied to a common, third party. If Paul and Pete 
each have a tie to Frank, for example, then the idea of transitivity suggests 
that they are more likely to have a tie to one another compared to a situation 
in which they have no friends in common.

Value Homophily: A tendency within a network for nodes to be dispropor-
tionately tied to others with whom they share particular values and/or tastes.

Turning next to triads, statisticians were keen to test the thesis of transitivity 
associated with the work of Mark Granovetter (1973, 1982); that is, the 
claim that two nodes are more likely to have a tie when they each have a tie 

01_Crossley et al_BAB1412B0263_CH_01.indd   15 17-Apr-15   5:51:16 PM



SOCIAL NETWORK ANALYSIS FOR EGO-NETS16

to a common third party. This can be tested by comparing the actual number 
of transitive triads in a network against the number expected by chance, 
controlling for both density and reciprocity. Complex statistical methods 
of modelling networks (Exponential Random Graph Models or ERGMs) 
have been devised from these relatively simple beginnings in recent years 
(Lusher et al. 2013).

We have barely scratched at the surface of whole network analysis here 
but we have hopefully said enough for scene-setting purposes (for a com-
prehensive introduction see Borgatti et al. 2013, Scott 2000 or Wasserman 
and Faust 1994). With this said we will briefly turn to two-mode networks.

Two-Mode Networks
In addition to whole networks, network analysts sometimes analyse two-
mode networks. In a two-mode network we have two different types of 
node and the type of tie that we are interested in exists only across these 
two types, not within them. A common example is a network of people 
(first mode) and events (second mode), with ‘attendance’ as the observed tie. 
People are tied to events where they attend those events but they are not, at 
least in the first case, tied to one another by a relation of attendance (people 
attend events but they do not attend one another) nor are events tied in this 
way (events do not attend events). 

Two-mode networks can be captured in matrices, like single-mode net-
works, with one mode (e.g. people) represented along the rows and the other 
(e.g. events) represented down the columns. These matrices are referred to 
as incidence matrices. Similarly, two-mode networks can be represented as 
graphs, as in Figure 1.4, where events are represented by grey squares and 
participants by black circles.

Actor 1

Actor 7

Actor 4
Actor 12Actor 8Actor 6

Actor 10Actor 5

Actor 2

Actor 11

Actor 9

Actor 3
Event 1

Event 4

Event 7

Event 5Event 2
Event 3Event 7

Figure 1.4 A two-mode network
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Many of the whole network measures introduced above have two-mode 
equivalents, making it possible for a two-mode network to be analysed 
in its basic form. It is very common, however, to ‘affiliate’ two-mode net-
works, deriving two single-mode networks from them which can then 
each be analysed in the normal way. A people and events network, for 
example, might be affiliated to give us a network of people (linked where 
they attend the same events) and a separate network of events (linked 
where they are attended by the same people). Figure 1.5 visualises the 
single-mode participant-to-participant network which can be derived 
from Figure 1.4. In this case participants are linked to one another where 
they have attended at least one of the same events. 

The data that we get when we affiliate two-mode data are weighted 
because participants might attend more than one of the same events. We 
might analyse the affiliated network in this weighted form. Alternatively, 
however, we might dichotomise it (simplifying it by deeming ties simply 
absent or present) on the basis of a threshold value. For example, we might 
decide to call two events connected when they share three or more of the 
same participants.

Actor 9

Actor 3

Actor 6

Actor 11
Actor 5

Actor 8

Actor 2

Actor 10

Actor 1

Actor 4

Actor 12

Actor 7

Figure 1.5 A single-mode network of participants derived from Figure 1.4

In historical research, using archival sources, it is often impossible to get 
whole, single-mode data and we may have to use an affiliated two-mode 
data source as a proxy. Indeed, there may be many reasons why we resort to 
two-mode data gathering as a means of deriving a single-mode network. 
If the resulting network is meaningful and fits with the theories driving 
the research this if often fine. Researchers should be aware, however, both 
that this method of data gathering tends to shape the resulting network in 
a number of ways and that the move from two to one mode (affiliation) 
involves a loss of information (Everett and Borgatti 2013). This latter problem 
may be avoided, in relation to some analytic routines, however, if both 
modes are analysed and the results of these two analyses recombined (ibid.)
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Ego-Nets
Having briefly introduced whole and two-mode networks we can now 
turn to the main focus of this book: ego-nets. As explained at the begin-
ning of this chapter, an ego-net is the network of contacts (alters) that 
form around a particular node (ego). Ego herself is sometimes removed for 
analytic purposes. That varies. Similarly, whilst it is often preferable to have 
data regarding (relevant) ties and the absence of such ties between alters, 
and whilst much of what we discuss in the book assumes access to such 
information, ego-net analysis may, in some cases, focus simply upon ego’s 
ties, bracketing the question of ties between alters. For present purposes, 
however, we will assume that an ego-net involves ego, her alters and all 
relevant ties between alters.

Ego-nets can be abstracted from whole networks. Each node in a whole 
network is or has an ego-net. Each has, potentially, a number of alters, and 
those alters are either connected to one another or not. Thus, in Figure 1.6 
we have abstracted four ego-nets from the whole net represented in Figure 
1.3 (the egos are the slightly larger, grey vertices).

A B

C D

Figure 1.6 Four ego-nets (extracted from Figure 1.3)

Note that each ego-net varies in size. A, B and C each have 2 alters but D 
has 6. If our egos ever needed extra muscle for a job they were contemplat-
ing then D would be better placed to get it, all other things being equal, 
than the others. On the other hand, she probably has many more people 
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asking her for favours and making demands upon her time, which may not 
always be a good thing. 

The structures of the nets also vary. Although A, B and C are each of the 
same size, B are C are each cliques, according to SNA’s technical definition, 
whereas A is not. A clique, it will be remembered, is a subset of nodes, each 
of whom enjoys a tie with each of the others. This is true of B and C, but A’s 
alters are not tied to one another. This will reduce the likelihood of solidar-
ity and consensus in A and may make coordination more difficult. It may 
also sometimes work to A’s advantage, however, as she controls the flow of 
information and resources between her two alters (at least as far as we can 
tell (see below)) and she may benefit from that. She may take credit for the 
good ideas of one alter when passing them on to the other, for example, 
and/or may be rewarded in kind by the recipient when passing on resources 
from one alter to another. 

Furthermore, the independence of her alters from one another means 
that they are more likely to provide access to different flows of information, 
which is an advantage. In a very famous paper on the information flows 
involved in securing a new job, Mark Granovetter (1973, 1982) observed 
that transitive ties (which were discussed above) are often ‘redundant’ in 
informational terms because ego’s alters will tend to give her the same 
information. Whilst transitive ties are more conducive to the development 
of trust, cooperation, consensus and solidarity (Coleman 1990), which 
can be an advantage (see Chapter Two), the closure of contacts precludes 
access to external nodes and thus external sources of ideas and information, 
resulting in constant regurgitation of the same ideas and information and, 
potentially thereby, stagnancy (Burt 2005). For this reason they can be less 
useful to those involved in them. New information is much more likely to 
come from intransitive ties; ties to alters who are not connected to the ego’s 
other alters.

Note that ego-net D, which is bigger than either A, B or C, combines 
elements of each of their respective structures. Ego D has access to two 
independent ‘pools’ of information, like A. D occupies a similar ‘brokerage’ 
position, albeit mediating between two groups of alters rather than just two 
alters. One of these two groups (located above her on the plot) is a clique, 
like ego-nets B and C. The other is one tie short of a clique. Perhaps ego 
D will enjoy both the benefits of transitivity and brokerage? She enjoys 
solidarity and trust with each of her two clusters of alters and also both the 
opportunity to broker between them (with the benefits that brings) and 
access to two distinct pools of information and other resources. However, 
her position may create its own constraints. Her two clusters may compete 
for her loyalty, for example, pressuring her to take sides, and they may make 
competing demands upon her time, energy and other resources (see, for 
example, Crossley 2008b). 
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The Pros and Cons of Ego-Analysis
It is always possible to extract ego-nets from a whole network. Where this 
is done the ego-nets can, of course, be recombined into a whole network, 
allowing the researcher to move between the level of the whole and the 
level of individual ego-nets. However, it is not always possible and not 
always desirable to gather whole network data. Researchers often elicit ego-
net data in ways which do not allow us to put the whole back together 
(although it is always there tacitly). There are three good reasons to do this.

Firstly, ego-net analysis affords a means of analysing big networks. If we 
are interested in a relatively small population of actors, such as participants 
in a local music scene, protest group or pupils in a school, then it is feasible 
for us to conduct a census survey of our node set and we can therefore do 
whole network analysis. If we are interested in processes affecting bigger 
populations, such as a whole town or ‘the general public’, however, then a 
census survey will not be possible in most cases, ruling out whole network 
analysis. Generally we are constrained to sample large populations, denying 
ourselves access to the information required for a whole network analysis. 
Ego-net analysis is entirely compatible with a sample survey, however. Indeed 
it will ordinarily involve a sample survey, and as such it is possible to use it in 
relation to much bigger populations. 

It is important to add here both that randomisation and other strate-
gies employed in sample surveys are entirely compatible with an ego-net 
approach and that questions which elicit ego-net data, of the type discussed 
in Chapter Three, can be added to any standard questionnaire. Indeed, it is 
becoming increasingly common for a small number of ego-net questions to 
be added to the various regular large national surveys conducted in many 
countries. Ego-net questions inevitably add bulk to a questionnaire and for 
this reason their inclusion has to be given careful consideration, but a small 
ego-net module will add no more bulk than any other module and may 
prove very enlightening. 

Secondly, because ego-net analysis is compatible with the range of 
sampling strategies routinely used in (quantitative) social science it is also 
compatible with most of the techniques of statistical analysis and modelling 
employed in such research. Whole network data contradict the assumptions 
of standard statistical approaches and, for this reason, can only be analysed, 
statistically, by means of a range of specially adapted methods (Borgatti 
et al. 2013, Lusher et al. 2013). Most obviously, for example, cases (nodes) 
in a whole network survey are not randomly sampled from a wider popu-
lation (as is assumed in inferential statistics) and the connections between 
them contradict the assumption of case-wise independence. There are no 
such problems with ego-net data, however, at least where appropriate sam-
pling techniques have been employed. We should add here, furthermore, 

01_Crossley et al_BAB1412B0263_CH_01.indd   20 17-Apr-15   5:51:17 PM



INTRODUCTION 21

that ego-net analysis generates a range of measures, discussed in Chapter 
Four, which may be included, alongside other, more conventional measures, 
in such research.

This will be particularly salient where networks are one amongst a number 
of foci within a research project, each of which must be accommodated 
within a single research design. Whole network analysis makes very specific 
demands upon the researcher and allows little room for compromise. As 
such it cannot easily be added to a project which has a remit beyond net-
works. Ego-net analysis, by contrast, is often quite easy to slot into a more 
conventionally structured project. 

A final advantage of ego-net research relates to what Simmel (1955) calls 
‘intersecting social circles’ and what White (2008) calls network domains or 
‘net doms’. Both writers observe that in modern societies most people inter-
act and form ties across a number of distinct ‘social circles’ or ‘domains’ whose 
membership, with the exception of ego herself, does not overlap. For example, 
the typical adult may have alters in their family, neighbourhood, workplace, 
gym and local pub. They are a point of intersection between these different 
circles but they are most likely the only point of intersection in many cases. 
Their gym buddies will probably know one another but won’t know anybody 
else in ego’s network and likewise for members of each of the other circles. 
These patterns of separation and intersection, which are essential to a proper 
understanding of the networked character of human social life, are much 
easier to get at by means of an ego-net survey. If we are interested in one 
domain, such as the gym, then a whole network approach may make sense 
because we have a relatively contained population (everybody who goes to 
the gym) (Crossley 2008b). If we are interested in many domains, however, 
some of which only overlap through a single node, then the size and com-
plexity of the task at hand, coupled with the demands of bounding our object 
of study, will often rule out a whole network study. We need to ask individual 
egos about the different social circles in which they mix and the different sets 
of alters with whom they enjoy ties in each of those circles.

Note here that focusing upon a single domain, as we typically do in a 
whole network analysis, may result in a distorted picture of the social world 
because it separates that domain from others. Studies of social influence 
within the whole network of a school or a gym population, for example, 
may miss important actors from outside of that domain who influence those 
within it. Ego’s activity in the gym may be affected by her relations to alters 
in a different domain, such as her family or workplace. Similarly, nodes 
who appear isolated may only be so in the one domain observed and only 
because they connect more strongly to alters in other domains not captured 
in the node set of a whole network study. By moving outwards from the 
individual and allowing us to tap into each of the various circles in which 
they mix, ego-net analysis helps to circumvent this potential problem.
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Having said this, there is a comparable problem with ego-net analysis, 
which is avoided in whole network analysis. To give an example: when dis-
cussing the ego-nets in Figure 1.6 we referred to A’s brokerage position 
and the advantages this creates for her. However, what if her two alters each 
have a tie to a common, fourth node who has no direct tie to A and who 
would not show up, therefore, in an ego-net study (see Figure 1.7)? Each of 
A’s alters now has an alternative source of information and other resources, 
which reduces A’s bargaining power. In Figure 1.7, A’s two alters are each in 
a position to play a brokerage role too, mediating between A and this fourth 
node. Indeed, each node in this mini network is in exactly the same position 
vis-à-vis the others: each connects two otherwise unconnected nodes and 
is indirectly connected to one further node by each of their alters. Exactly 
how this will play out is not clear, but what matters for our purposes is that 
where our ego-net analysis (Figure 1.6) suggested that A was in an advanta-
geous position, compared to her alters, a fuller analysis suggests that she is 
not. She is in the same position as each of her alters. And that is only how she 
appears on the basis of this snapshot. If we were to add further nodes then 
the picture may change again. Additional information, beyond that regarding 
A’s ego-net, changes the picture that we derive from A’s ego-net. This is only 
one example of the kinds of complications and qualifications (to an ego-net 
analysis) that might arise if we have access to what is, in this respect at least, 
the fuller structural information that we derive from a whole network study.

Alter 1
Alter 2

Ego

Not visible in an
ego-net analysis

The Fourth Node

Figure 1.7 The fourth node

Beyond this we may be interested in the properties of the whole network 
and/or its broader sub-groupings. Some of these properties could be inferred 
from a sample of ego-nets. If we are confident that the number of alters 
(‘degree’) is normally distributed across a population, for example, and that our 
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sample of ego-nets is truly random, then we may infer the average degree, 
and by means of this, the density of a whole network from our sample. 
Furthermore, again on condition of assumptions regarding distribution and 
randomness, the density of individual ego-nets may be used to infer likely 
levels of clustering in the wider network. However, our assumptions may not 
hold. A body of literature has emerged in recent years pointing to the exist-
ence of a class of networks whose degree manifests a so-called ‘power-law 
distribution’. In lay terms this means that a very small proportion of nodes in 
a network have a huge number of alters, whilst the vast majority have only 
a small number. Where this occurs the network has a very distinctive, cen-
tralised, structure but one that will probably elude a random sample survey 
because random sampling is unlikely to pick up the tiny minority of ‘hub’ 
nodes in the population. Again this is just one example, amongst many, of 
whole network level properties that are difficult and/or impossible to get at 
by means of a sample of ego-nets.

Quantity and Quality
The discussion in this chapter hitherto has been largely framed in quantitative 
terms. We have spoken of random samples, measures and models. Network 
analysis, in all of its forms, is amenable to a mixing of methods, quantitative 
and qualitative, however, and we intend to reflect this in this book. Matrices 
are a good means of capturing who knows whom. They allow us to distin-
guish between types of ties, different strengths of connection and sometimes 
also between positive and negative ties. But we may wish to know more 
about the meaning of specific alters for ego, what they do together and the 
‘story’, as White (2008) calls it, of their relationship. We may wish to embel-
lish our data regarding ego’s network with wider qualitative information 
about their life and outlook, gleaned through qualitative interviews, and/
or to embed our ego-net data within an ethnographic understanding of 
its context. Indeed, much early and pioneering research on SNA emerged 
out of an ethnographic context, with graph theoretic methods being used 
to build upon, organise and systematise qualitative-observational data, and 
the authors of that work often included both quantitatively and qualitatively 
defined properties in their concept of a ‘network’ (e.g. Mitchell 1969). 

This is significant for the present authors because several of these pioneers 
were members of the ‘Manchester School’ – a research cluster (to use the con-
temporary jargon) based in our own institution. Indeed, our own research 
centre, the Mitchell Centre, is named after one of these pioneers, and he, 
in turn, was the PhD supervisor of one of us (Martin Everett). Our vision 
of SNA, both in this book and more generally, reflects the pragmatic and 
mixed approach of the original Manchester School, combining methods 
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where it makes sense to do so and moving freely between qualitative and 
quantitative data. 

Conclusion and Chapter Plan
In this chapter we have introduced the idea of ego-net analysis, comparing 
it with analysis of whole networks and considering both where it is most 
appropriate and what its respective strengths and weaknesses are. We have 
also introduced the vocabulary of SNA and a number of concepts and 
measures which will be revisited in greater detail in later chapters. It only 
remains for this chapter to briefly map out the content of these chapters.

Chapter Two – Social Capital and Small Worlds: A Primer: Many 
recent developments in ego-net analysis have originated in the context of 
debates in two central substantive areas of research: social capital and small 
worlds. In order to facilitate proper understanding of these developments we 
use Chapter Two to briefly introduce these two areas of substantive research, 
explaining where and why they connect to innovations in ego-net research. 

Chapter Three – Getting Ego-Nets: Here we consider a number of the 
most common ways of gathering ego-net data.

Chapter Four – Analysing Ego-Net Data: We discuss all of the main 
measures of ego-net properties typically used by network analysts, explain-
ing where and why they should be used.

Chapter Five – Narratives, Typologies and Case Studies: This chap-
ter introduces qualitative approaches to ego-net analysis and discusses the 
advantages of adopting a mixed-method approach.

Chapter Six – Multilevel Models for Cross-Sectional Ego-Nets: In 
this chapter and also Chapter Seven, we build on the discussion of ego-net 
measures in Chapter Four but also slightly shift our focus and gear, by con-
sidering a number of recent statistical developments in ego-net analysis. In 
Chapter Six specifically we focus in particular upon the way in which ego-
net data might be used in the context of multilevel modelling.

Chapter Seven – Statistical Analysis of Network Dynamics: Sticking 
with a more advanced statistical approach, this chapter considers methods 
for modelling change within ego-nets across time.
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